Progress in sequencing of the complete haplotype-resolved diploid genomes of plants
26.01.2024
Авторы:
Название:
Progress in sequencing of the complete haplotype-resolved diploid genomes of plants
Страницы:
297-309
Now most of the genomes of higher organisms are assembled for haploid set of chromosomes, in which DNA fragments from paired chromosomes from different parents alternate in the mosaic order. In this regard, such assemblies are more logical to consider as quasi-genomes, since they do not provide accurate information about the relationship between genotype and phenotype. A new level of genome assembly is haplotype-resolved diploid genomes of higher organisms, including plants and their polyploid forms that have undergone cytological and functional diploidization. Given the importance of such genome assemblies, a large number of corresponding computer programs have been developed that allow phased genome assembly and analysis. To date, haplotype-resolved diploid genomes have been assembled for more than 60 species of plants. Among them are various agricultural plants, ornamental plants, fruit trees and shrubs, forest trees, medicinal plants and others. For the most part, they are represented by diploid plants, but there are also triploids, auto- and allo-tetraploids, hexaploids and even octaploids. The sizes of the assembled genomes also vary greatly - from 135 million bp to 21.6 billion bp. In many articles it is note that phased genome assembly helped to more accurately determine individual important characteristics of the studied plants, including origin, evolution, domestication, yield, resistance to diseases and pests, as well as better understanding of metabolic pathways and mechanisms of heterosis.
- Abou Saada O, Tsouris A, Eberlein C, Friedrich A, Schacherer J. nPhase: an accurate and contiguous phasing method for polyploids. Genome Biol. 2021. V.22(1). 126. doi:10.1186/s13059-021-02342-x 2. Adams MD, Celniker SE, Holt RA. et al. The genome sequence of Drosophila melanogaster. Science. 2000. V.287. P.2185-2195. doi:10.1126/science.287.5461.2185 3. Ahmed HI, Heuberger M, Schoen A et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature. 2023. V.620(7975). P.830-838. doi:10.1038/s41586-023-06389-7 4. Aury JM, Istace B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genom Bioinform. 2021. V.3(2). lqab034. doi:10.1093/nargab/lqab034 5. Baaijens JA, Schönhuth A. Overlap graph-based generation of haplotigs for diploids and polyploids. Bioinformatics. 2019. V.35(21). P.4281-4289. doi:10.1093/bioinformatics/btz255 6. Bao Z, Li C, Li G et al. Genome architecture and tetrasomic inheritance of autotetraploid potato. Mol Plant. 2023. V.16(11). 1866. doi:10.1016/j.molp.2023.10.005 7. Baymiev AlKh, Kuluev AR, Matniyazov RT, Garafutdinov RR, Bayimiev AnKh, Gimalov FR, Chemeris DA, Kuluev BR, Chemeris AV. The variety of quantitative estimates of the DNA content in plant nuclei and their dispersion, some terms and concepts (genome, C-value, pangenome). Biomics. 2022. V.14(1). P. 79-100. doi:10.31301/2221-6197.bmcs.2022-6 (In Russian) 8. Belser C, Baurens FC, Noel B. et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol. 2021. V.4(1). 1047. doi:10.1038/s42003-021-02559-3 9. Berger E, Yorukoglu D, Berger B. HapTree-X: An Integrative Bayesian Framework for Haplotype Reconstruction from Transcriptome and Genome Sequencing Data. Res Comput Mol Biol. 2015. V.9029. P.28-29. doi:10.1007/978-3-319-16706-0_4 10. Bolognini D, Sanders A, Korbel JO. et al. VISOR: a versatile haplotype-aware structural variant simulator for short- and long-read sequencing. Bioinformatics. 2020. V.36(4). P.1267-1269. doi:10.1093/bioinformatics/btz719 11. Campoy JA, Sun H, Goel M. et al. Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biol. 2020. V.21(1). 306. doi:10.1186/s13059-020-02235-5 12. Chemeris AV, Akhunov ED, Vakhitov VA. DNA sequencing. Moscow. Nauka. 1999. 429 p. (In Russian) 13. Chemeris DA, Kuluev BR, Garafutdinov RR, Gerashchenkov GA, Baymiev AnKh, Baymiev AlKh, Chemeris AV. The study of pangenomes and super-pangenomes is a necessary requirement for the creation of promising intragenic and cisgenic plants, as well as the disclosure of the nature of heterosis. Biomics. 2023. V.15(3). P.167-203. DOI:10.31301/2221-6197.bmcs.2023-17 (In Russian) 14. Chen H, Zeng Y, Yang Y et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun. 2020. V.11(1). 2494. doi:10.1038/s41467-020-16338-x 15. Chen SH, Martino AM, Luo Z, Schwessinger B, Jones A, Tolessa T, Bragg JG, Tobias PA, Edwards RJ. A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes. Gigascience. 2023. V.12. giad102. doi:10.1093/gigascience/giad102 16. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021. V.18(2). P.170-175. doi:10.1038/s41592-020-01056-5 17. Cheng SP, Jia KH, Liu H et al. Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger. Hortic Res. 2021a. V.8(1). 188. doi:10.1038/s41438-021-00599-8 18. Cheng Y, Sun J, Jiang M et al. Chromosome-scale genome sequence of Suaeda glauca sheds light on salt stress tolerance in halophytes. Hortic Res. 2023. V.10(9). uhad161. doi:10.1093/hr/uhad161 19. Chin CS, Peluso P, Sedlazeck FJ. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016. V.13(12). P.1050-1054. doi:10.1038/nmeth.4035 20. Cochetel N, Minio A, Guarracino A, Garcia JF, Figueroa-Balderas R, Massonnet M, Kasuga T, Londo JP, Garrison E, Gaut BS, Cantu D. A super-pangenome of the North American wild grape species. Genome Biol. 2023. V.24(1). 290. doi:10.1186/s13059-023-03133-2 21. Cochetel N, Minio A, Massonnet M. et al. Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence. G3 (Bethesda). 2021. V.11(4). jkab033. doi:10.1093/g3journal/jkab033 22. Colle M, Leisner C, Wai CM. et al. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. Gigascience. 2019. V.8(3). giz012. doi:10.1093/gigascience/giz012 23. Darby CA, Fitch JR, Brennan PJ. et al. Samovar: Single-Sample Mosaic Single-Nucleotide Variant Calling with Linked Reads. iScience. 2019. V.18. P.1-10. doi:10.1016/j.isci.2019.05.037 24. Delorean EE, Youngblood RC, Simpson SA. et al. Representing true plant genomes: haplotype-resolved hybrid pepper genome with trio-binning. Front Plant Sci. 2023. V.14. 184112. doi:10.3389/fpls.2023.1184112 25. Deng Y, Liu S, Zhang Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant. 2022. V.15(8). P.1268-1284. doi:10.1016/j.molp.2022.06.010 26. Ebler J, Haukness M, Pesout T, Marschall T, Paten B. Haplotype-aware diplotyping from noisy long reads. Genome Biol. 2019. V.20(1). 116. doi:10.1186/s13059-019-1709-0 27. Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 2017. V.27(5). P.801-812. doi:10.1101/gr.213462.116 28. Figueroa-Balderas R, Minio A, Morales-Cruz A. et al. Strategies for Sequencing and Assembling Grapevine Genomes. In: Cantu, D., Walker, M. (eds) The Grape Genome. 2019. P.77-88. doi:10.1007/978-3-030-18601-2_5 29. French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007. V.449(7161). P.463-467. doi:10.1038/nature06148 30. Frommer B, Müllner S, Holtgräwe D. et al. Phased grapevine genome sequence of an Rpv12 carrier for biotechnological exploration of resistance to Plasmopara viticola. Front Plant Sci. 2023. V.14. 1180982. doi:10.3389/fpls.2023.1180982 31. Fruzangohar M, Timmins WA, Kravchuk O, Taylor J. HaploMaker: An improved algorithm for rapid haplotype assembly of genomic sequences. Gigascience. 2022. V.11. giac038. doi:10.1093/gigascience/giac038 32. Fu A, Zheng Y, Guo J. et al. Telomere-to-telomere genome assembly of bitter melon (Momordica charantia L. var. abbreviata Ser.) reveals fruit development, composition and ripening genetic characteristics. Hortic Res. 2022. V.10(1). uhac228. doi:10.1093/hr/uhac228 33. Garg S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol. 2021. V.22(1). 101. doi:10.1186/s13059-021-02328-9 34. Garg S, Aach J, Li H, Sebenius I, Durbin R, Church G. A haplotype-aware de novo assembly of related individuals using pedigree sequence graph. Bioinformatics. 2020. V.36(8). P.2385-2392. doi:10.1093/bioinformatics/btz942 35. Garg S, Fungtammasan A, Carroll A. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat Biotechnol. 2021. V.39(3). P.309-312. doi:10.1038/s41587-020-0711-0 36. Garg S, Rautiainen M, Novak AM, Garrison E, Durbin R, Marschall T. A graph-based approach to diploid genome assembly. Bioinformatics. 2018. V.34(13). P.i105-i114. doi:10.1093/bioinformatics/bty279 37. Gilbert W, Maxam A. The nucleotide sequence of the lac operator. Proc Natl Acad Sci USA. 1973. V.70(12). P.3581-3584. doi:10.1073/pnas.70.12.3581 38. 48. Gladman N, Goodwin S, Chougule K, McCombie WR, Ware D. Era of gapless plant genomes: innovations in sequencing and mapping technologies revolutionize genomics and breeding. Curr Opin Biotechnol. 2023. V.79. 102886. doi:10.1016/j.copbio.2022.102886 39. Guan D, McCarthy SA, Wood J. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020. V.36(9). P.2896-2898. doi:10.1093/bioinformatics/btaa025 40. Guk JY, Jung M-J, Choi J-W. et al. De novo phasing resolves haplotype sequences in complex plant genomes. Plant Biotechnol J. 2022. V.20(6). P.1031-1041. doi:10.1111/pbi.13815 41. Hameed A, Poznanski P, Nadolska-Orczyk A. et al. Graph Pangenomes Track Genetic Variants for Crop Improvement. Int J Mol Sci. 2022. V.23(21). 13420. doi:10.3390/ijms232113420 42. Han X, Zhang Y, Zhang Q. et al. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Mol Plant. 2023. V.16(2). P.452-470. doi:10.1016/j.molp.2022.12.022 43. Hardigan MA, Feldmann MJ, Picot DDA. et al. Blueprint for Phasing and Assembling the Genomes of Heterozygous Polyploids: Application to the Octoploid Genome of Strawberry. bioRxiv. 2021.11.03.467115. doi:10.1101/2021.11.03.467115 44. Hashemi A, Zhu B, Vikalo H. Sparse Tensor Decomposition for Haplotype Assembly of Diploids and Polyploids. BMC Genomics. 2018. V.19(Suppl 4). 191. doi:10.1186/s12864-018-4551-y 45. Heller D, Vingron M. SVIM-asm: Structural variant detection from haploid and diploid genome assemblies. Bioinformatics. 2020. 36(22-23). P.5519–5521. doi:10.1093/bioinformatics/btaa1034 46. Heller D, Vingron M, Church G, Li H, Garg S. SDip: A novel graph-based approach to haplotype-aware assembly based structural variant calling in targeted segmental duplications sequencing. bioRxiv 2020.02.25.964445. doi:10.1101/2020.02.25.964445 47. Hoopes G, Meng X, Hamilton JP et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol Plant. 2022. V.15(3). P.520-536. doi:10.1016/j.molp.2022.01.003 48. Hu G, Feng J, Xiang X. et al. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nat Genet. 2022. V.54(1). P.73-83. doi:10.1038/s41588-021-00971-3 49. Huang HR, Liu X, Arshad R, Wang X, Li WM, Zhou Y, Ge XJ. Telomere-to-telomere haplotype-resolved reference genome reveals subgenome divergence and disease resistance in triploid Cavendish banana. Hortic Res. 2023. V.10(9). uhad153. doi:10.1093/hr/uhad153 50. Huang S, Kang M, Xu A. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics. 2017. V.33(16). P.2577-2579. doi:10.1093/bioinformatics/btx220 51. Hulse-Kemp AM, Maheshwari S, Stoffel K. et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic Res. 2018. V.5. 4. doi:10.1038/s41438-017-0011-0 52. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 2002. V.129(2). P.440-450. doi:10.1104/pp.003533 53. Jia KH, Wang ZX, Wang L et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 2022. V.235(2). P.801-809. doi:10.1111/nph.18173 54. Jiang L, Lin M, Wang H et al. Haplotype-resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value. Plant J. 2022. V.111(5). P.1340-1353. doi:10.1111/tpj.15892 55. Jin X, Du H, Zhu C et al. Haplotype-resolved genomes of wild octoploid progenitors illuminate genomic diversifications from wild relatives to cultivated strawberry. Nat Plants. 2023. V.9(8). P.1252-1266. doi:10.1038/s41477-023-01473-2 56. Kajitani R, Yoshimura D, Okuno M. et al. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent .heterozygous regions. Nat Commun. 2019. V.10(1). P.1702. doi:10.1038/s41467-019-09575-2 57. Khan A, Carey SB, Serrano A, Zhang H, Hargarten H, Hale H, Harkess A, Honaas L. A phased, chromosome-scale genome of 'Honeycrisp' apple (Malus domestica). GigaByte. 2022. gigabyte69. doi:10.46471/gigabyte.69 58. Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 2020. V.25(2). P.148-158. doi:10.1016/j.tplants.2019.10.012 59. Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Plant Complex Genomes. Genomics Proteomics Bioinformatics. 2023. V.21(3). P. 427-439. doi:10.1016/j.gpb.2023.04.004 60. Koren S, Rhie A, Walenz BP. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol. 2018. V. 22. 10.1038/nbt.4277. doi:10.1038/nbt.4277 61. Kronenberg ZN, Rhie A, Koren S. et al. Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C. Nat Commun. 2021. V.12(1). 1935. doi:10.1038/s41467-020-20536-y 62. Kuluev A., Kuluev B., Chemeris A. Sequencing and analysis of complete chloroplast genomes of einkorn wheats Triticum sinskajae and Triticum monococcum accession k-20970. Genetic Resources and Crop Evolution. 2024. (In Press) 63. Kuluev BR, Baymiev AnKh, Gerashchenkov GA, Yunusbaev UB, Garafutdinov RR, Alekseev YaI, Baymiev AlKh, Chemeris AV. One hundred years of haploid genomes. Now time comes for diploid genomes. Biomics. 2020. V. 12(4). P. 411-434. DOI: 10.31301/2221-6197.bmcs.2020-33 (In Russian) 64. Lai J, Li R, Xu X et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet. 2010. V.42(11). P.1027-1030. doi:10.1038/ng.684 65. Lam HM, Xu X, Liu X. et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet. 2010. V.42. P.1053–1059. doi:10.1038/ng.715 66. Landi M, Shah T, Falquet L, Niazi A, Stavolone L, Bongcam-Rudloff E, Gisel A. Haplotype-resolved genome of heterozygous African cassava cultivar TMEB117 (Manihot esculenta). Sci Data. 2023. V.10(1). 887. doi:10.1038/s41597-023-02800-0 67. Li H, Sun P, Wang Y. et al. Allele-aware chromosome-level genome assembly of the autohexaploid Diospyros kaki Thunb. Sci Data. 2023. V.10(1). 270. doi:10.1038/s41597-023-02175-2 68. Li HL, Wu L, Dong Z et al. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Hortic Res. 2021. V.8(1). 189. doi:10.1038/s41438-021-00627-7 69. Li W, Liu J, Zhang H. et al. Plant pan-genomics: recent advances, new challenges, and roads ahead. J Genet Genomics. 2022. V.49(9). P.833-846. doi:10.1016/j.jgg.2022.06.004 70. Liao B, Shen X, Xiang L. et al. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Mol Plant. 2022. V.15(8). P.1310-1328. doi:10.1016/j.molp.2022.05.013 71. Lin JH, Chen LC, Yu SC, Huang YT. LongPhase: an ultra-fast chromosome-scale phasing algorithm for small and large variants. Bioinformatics. 2022. V.38(7). P.1816-1822. doi:10.1093/bioinformatics/btac058 72. Liu D, Tian X, Shao S, Ma Y, Zhang R. Haplotype-resolved chromosomal-level genome assembly of Buzhaye (Microcos paniculata). Sci Data. 2023. V.10(1). 901. doi:10.1038/s41597-023-02821-9 73. Liu J, Seetharam AS, Chougule K. et al. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 2020. V.21(1). 121. doi:10.1186/s13059-020-02029-9 74. Liu X, Arshad R, Wang X. et al. The phased telomere-to-telomere reference genome of Musa acuminata, a main contributor to banana cultivars. Sci Data. 2023a. V.10(1). 631. doi:10.1038/s41597-023-02546-9 75. Long EM, Bradbury PJ, Romay MC, Buckler ES, Robbins KR. Genome-wide imputation using the practical haplotype graph in the heterozygous crop cassava. G3 (Bethesda). 2022. V.12(1). jkab383. doi:10.1093/g3journal/jkab383 76. Long R, Zhang F, Zhang Z. et al. Genome Assembly of Alfalfa Cultivar Zhongmu-4 and Identification of SNPs Associated with Agronomic Traits. Genomics Proteomics Bioinformatics. 2022a. V.20(1). P.14-28. doi:10.1016/j.gpb.2022.01.002 77. Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA. Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids. Gigascience. 2022. V.12:giad064. doi:10.1093/gigascience/giad064 78. Luo CS, Li TT, Jiang XL. et al. High-quality haplotype-resolved genome assembly for ring-cup oak (Quercus glauca) provides insight into oaks demographic dynamics. Mol Ecol Resour. 2023. e13914. doi:10.1111/1755-0998.13914 79. Luo X., Kang X., Schönhuth A. phasebook: haplotype-aware de novo assembly of diploid genomes from long reads. Genome Biol. 2021. V.22(1). 299. doi:10.1186/s13059-021-02512-x 80. Maestri S, Gambino G, Lopatriello G. et al. 'Nebbiolo' genome assembly allows surveying the occurrence and functional implications of genomic structural variations in grapevines (Vitis vinifera L.). BMC Genomics. 2022. V.23(1). 159. doi:10.1186/s12864-022-08389-9 81. Mahmoud M, Doddapaneni H, Timp W, Sedlazeck FJ. PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biol. 2021. V.22(1). 268. doi:10.1186/s13059-021-02486-w 82. Majidian S, Kahaei MH, de Ridder D. Hap10: reconstructing accurate and long polyploid haplotypes using linked reads. BMC Bioinformatics. 2020. V.21(1). 253. doi:10.1186/s12859-020-03584-5 83. Mango Genome Consortium. The 'Tommy Atkins' mango genome reveals candidate genes for fruit quality. BMC Plant Biol. 2021. V.21(1). 108. doi:10.1186/s12870-021-02858-1 84. Mansfeld BN, Boyher A, Berry JC. et al. Large structural variations in the haplotype-resolved African cassava genome. Plant J. 2021. V.108(6). P.1830-1848. doi:10.1111/tpj.15543 85. 105. Mao J, Wang Y, Wang B. et al. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. Hortic Res. 2023. V.10(1). uhad002. doi:10.1093/hr/uhad002 86. Massonnet M, Cochetel N, Minio A. et al. The genetic basis of sex determination in grapes. Nat Commun. 2020. V.11(1). 2902. doi:10.1038/s41467-020-16700-z 87. Massonnet M, Vondras AM, Cochetel N. Et al. Haplotype-resolved powdery mildew resistance loci reveal the impact of heterozygous structural variation on NLR genes in Muscadinia rotundifolia. G3 (Bethesda). 2022. V.12(8). jkac148. doi:10.1093/g3journal/jkac148 88. Masutani B, Suzuki Y, Suzuki Y, Morishita S. JTK: targeted diploid genome assembler. Bioinformatics. 2023. V.39(7). btad398. doi:10.1093/bioinformatics/btad398 89. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA. 1977. V.74(2). P.560-564. doi:10.1073/pnas.74.2.560 90. Mazrouee S, Wang W. PolyCluster: Minimum Fragment Disagreement Clustering for Polyploid Phasing. IEEE/ACM Trans Comput Biol Bioinform. 2020. V.17(1). P.264-277. doi:10.1109/TCBB.2018.2858803 91. Mengist MF, Bostan H, De Paola D. et al. Autopolyploid inheritance and a heterozygous reciprocal translocation shape chromosome genetic behavior in tetraploid blueberry (Vaccinium corymbosum). New Phytol. 2023. V.237(3). P.1024-1039. doi:10.1111/nph.18428 92. Michael TP, VanBuren R. Building near-complete plant genomes. Curr Opin Plant Biol. 2020 V.54. P.26-33. doi:10.1016/j.pbi.2019.12.009 93. Miller DB, Piccolo SR. trioPhaser: using Mendelian inheritance logic to improve genomic phasing of trios. BMC Bioinformatics. 2021. V.22(1). 559. doi:10.1186/s12859-021-04470-4 94. Minio A, Cochetel N, Massonnet M. et al. HiFi chromosome-scale diploid assemblies of the grape rootstocks 110R, Kober 5BB, and 101-14 Mgt. Sci Data. 2022. V.9(1). 660. doi:10.1038/s41597-022-01753-0 95. Minio A, Cochetel N, Vondras AM, Massonnet M, Cantu D. Assembly of complete diploid-phased chromosomes from draft genome sequences. G3 (Bethesda). 2022a. V.12(8). jkac143. doi:10.1093/g3journal/jkac143 96. Minio A, Lin J, Gaut BS, Cantu D. How Single Molecule Real-Time Sequencing and Haplotype Phasing Have Enabled Reference-Grade Diploid Genome Assembly of Wine Grapes. Front Plant Sci. 2017. V.8. 826. doi:10.3389/fpls.2017.00826 97. Minio A, Massonnet M, Figuerosa-Balderas R, Castro A, Cantu D. Diploid Genome Assembly of the Wine Grape Carmenere. G3 (Bethesda). 2019. V.9(5). P.1331-1337. doi:10.1534/g3.119.400030 98. Moeinzadeh MH, Yang J, Muzychenko E. et al. Ranbow: A fast and accurate method for polyploid haplotype reconstruction. PLoS Comput Biol. 2020. V.16(5). e1007843. doi:10.1371/journal.pcbi.1007843 99. Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol. 2007. V.10(2). P.149-155. doi:10.1016/j.pbi.2007.02.001 100. Naithani S, Deng CH, Sahu SK, Jaiswal P. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes. Biomolecules. 2023. V.13(9). 1403. doi:10.3390/biom13091403 101. Naito K. How to Sequence and Assemble Plant Genomes. Methods Mol Biol. 2023. V.2632. P.57-77. doi:10.1007/978-1-0716-2996-3_5 102. Nakandala U, Masouleh AK, Smith MW. et al. Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. Hortic Res. 2023. V.10(5). uhad058. doi:10.1093/hr/uhad058 103. Nashima K, Shirasawa K, Ghelfi A. et al. Genome sequence of Hydrangea macrophylla and its application in analysis of the double flower phenotype. DNA Res. 2021. V.28(1). dsaa026. doi:10.1093/dnares/dsaa026 104. Nashima K., Shirasawa K., Isobe S. et al. Gene prediction for leaf margin phenotype and fruit flesh color in pineapple (Ananas comosus) using haplotype-resolved genome sequencing. Plant J. 2022. V.110(3). P.720-734. doi:10.1111/tpj.15699 105. Nowak R. Entering the postgenome era. Science. 1995. V.270. P.368-371. 106. Padgitt-Cobb LK, Kingan SB, Wells J. et al. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. Plant Genome. 2021. V.14(1). e20072. doi:10.1002/tpg2.20072 107. Pan W, Zhao Y, Xu Y, Zhou F. WinHAP2: an extremely fast haplotype phasing program for long genotype sequences. BMC Bioinformatics. 2014. V.15. 164. doi:10.1186/1471-2105-15-164 108. Petereit J, Bayer PE, Thomas WJW, Tay Fernandez CG, Amas J, Zhang Y, Batley J, Edwards D. Pangenomics and Crop Genome Adaptation in a Changing Climate. Plants (Basel). 2022. V.11(15). 1949. doi:10.3390/plants11151949 109. Piet Q, Droc G, Marande W. et al. A chromosome-level, haplotype-phased Vanilla planifolia genome highlights the challenge of partial endoreplication for accurate whole-genome assembly. Plant Commun. 2022. V.3(5). 100330. doi:10.1016/j.xplc.2022.100330 110. Qi W, Lim Y-W, Patrignani A. et al. The haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar reveal novel pan-genome and allele-specific transcriptome features. Gigascience. 2022. V.11. giac028. doi:10.1093/gigascience/giac028 111. Rautiainen M, Nurk S, Walenz BP. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat Biotechnol. 2023. V.41(10). P.1474-1482. doi:10.1038/s41587-023-01662-6 112. Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, Schmidt SA, Borneman AR. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genet. 2018. V.14(11). e1007807. doi:10.1371/journal.pgen.1007807 113. Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 2018. V.19(1). 460. doi:10.1186/s12859-018-2485-7 114. Samaniego Castruita JA, Zepeda Mendoza ML, Barnett R. Et al. Odintifier--A computational method for identifying insertions of organellar origin from modern and ancient high-throughput sequencing data based on haplotype phasing. BMC Bioinformatics. 2015. V.16(1). 232. doi:10.1186/s12859-015-0682-1 115. Sanger F, Donelson JE, Coulson AR, Kössel H, Fischer D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA. Proc Natl Acad Sci USA. 1973. V.70(4). P.1209-1213. doi:10.1073/pnas.70.4.1209 116. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977. V.74(12). P.5463-5467. doi:10.1073/pnas.74.12.5463 117. Sankararaman A, Vikalo H, Baccelli F. ComHapDet: a spatial community detection algorithm for haplotype assembly. BMC Genomics. 2020. V.21(Suppl 9). 586. doi:10.1186/s12864-020-06935-x 118. Shaw J, Yu YW. flopp: Extremely Fast Long-Read Polyploid Haplotype Phasing by Uniform Tree Partitioning. J Comput Biol. 2022. V.29(2). P.195-211. doi:10.1089/cmb.2021.0436 119. Shen C, Du H, Chen Z. et al. The Chromosome-Level Genome Sequence of the Autotetraploid Alfalfa and Resequencing of Core Germplasms Provide Genomic Resources for Alfalfa Research. Mol Plant. 2020. V.13(9). P.1250-1261. doi:10.1016/j.molp.2020.07.003 120. Shen Y, Li W, Zeng Y. et al. Chromosome-level and haplotype-resolved genome provides insight into the tetraploid hybrid origin of patchouli. Nat Commun. 2022. V.13(1). 3511. doi:10.1038/s41467-022-31121-w 121. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present and future. Nature. 2017. V.550(7676). P.345-353. doi:10.1038/nature24286 122. Shi D, Wu J, Tang H. et al. Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Res. 2019. V.29(11). P.1889-1899. doi:10.1101/gr.251033.119 123. Shi J, Tian Z, Lai J, Huang X. Plant pan-genomics and its applications. Mol Plant. 2023. V.16(1). P.168-186. doi:10.1016/j.molp.2022.12.009 124. Shirasawa K, Esumi T, Hirakawa H. et al. Phased genome sequence of an interspecific hybrid flowering cherry, 'Somei-Yoshino' (Cerasus × yedoensis). DNA Res. 2019. V.26(5). P.379-389. doi:10.1093/dnares/dsz016 125. Shirasawa K., Harada D., Hirakawa H., Isobe S., Kole C. Chromosome-level de novo genome assemblies of over 100 plant species. Breed Sci. 2021. V.71(2). P.117-124. doi:10.1270/jsbbs.20146 126. Shirasawa K., Hirakawa H., Azuma A. et al. De novo whole-genome assembly in an interspecific hybrid table grape, 'Shine Muscat'. DNA Res. 2022. V.29(6). dsac040. doi:10.1093/dnares/dsac040 127. Shirasawa K, Itai A, Isobe S. Genome sequencing and analysis of two early-flowering cherry (Cerasus × kanzakura) varieties, 'Kawazu-zakura' and 'Atami-zakura'. DNA Res. 2021a. V.28(6). dsab026. doi:10.1093/dnares/dsab026 128. Shirasawa K, Ueta S, Murakami K, Abdelrahman M, Kanno A, Isobe S. Chromosome-scale haplotype-phased genome assemblies of the male and female lines of wild asparagus (Asparagus kiusianus), a dioecious plant species. DNA Res. 2022a. V.29(1). dsac002. doi:10.1093/dnares/dsac002 129. Sichel V, Sarah G, Girollet N, Laucou V, Roux C, Roques M, Mournet P, Cunff LL, Bert PF, This P, Lacombe T. Chimeras in Merlot grapevine revealed by phased assembly. BMC Genomics. 2023. V.24(1). 396. doi:10.1186/s12864-023-09453-8 130. Sinha S, Zhang CZ. Determining Complete Chromosomal Haplotypes by mLinker. Methods Mol Biol. 2023. V.2590. P.149-159. doi:10.1007/978-1-0716-2819-5_10 131. Smith HH. Effects of Genome Balance, Polyploidy, and Single Extra Chromosomes on Size in Nicotiana. Genetics. 1943. V.28(3). P.227-236. 132. Smit SJ, Vivier MA, Young PR. Comparative (Within Species) Genomics of the Vitis vinifera L. Terpene Synthase Family to Explore the Impact of Genotypic Variation Using Phased Diploid Genomes. Front Genet. 2020. V.11. 421. doi:10.3389/fgene.2020.00421 133. Solares EA, Tao Y, Long AD, Gaut BS. HapSolo: an optimization approach for removing secondary haplotigs during diploid genome assembly and scaffolding. BMC Bioinformatics. 2021. V.22(1). 9. doi:10.1186/s12859-020-03939-y 134. Švara A, Sun H, Fei Z, Khan A. Chromosome-level phased genome assembly of 'Antonovka' identified candidate apple scab resistance genes highly homologous to HcrVf2 and HcrVf1 on linkage group 1. G3 (Bethesda). 2023. V.4. jkad253. doi:10.1093/g3journal/jkad253 135. Sun H, Campoy JA, Schneeberger K. Gamete Binning to Achieve Haplotype-Resolved Genome Assembly. Methods Mol Biol. 2023. V.2590. P.201-218. doi:10.1007/978-1-0716-2819-5_13 136. Sun H, Jiao WB, Krause K. et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat Genet. 2022. V.54(3). P.342-348. doi:10.1038/s41588-022-01015-0 137. Sun X, Jiao C, Schwaninger H. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 2020. V.52(12). P.1423-1432. doi:10.1038/s41588-020-00723-9 138. Sun Y, Shang L, Zhu QH, Fan L, Guo L. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci. 2022. V.27(4). P.391-401. doi:10.1016/j.tplants.2021.10.006 139. Tay Fernandez CG, Nestor BJ, Danilevicz MF, Gill M, Petereit J, Bayer PE, Finnegan PM, Batley J, Edwards D. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. Int J Mol Sci. 2022. V.23(5). 2671. doi:10.3390/ijms23052671 140. Tettelin H, Masignani V, Cieslewicz MJ. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci USA. 2005. V.102(39). P.13950-13955. doi:10.1073/pnas.0506758102 141. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000. V. 408. P.796–815. doi:10.1038/35048692 142. The C.elegans Sequencing Consortium. Sequence and analysis of the genome of C.elegans. Science. 1998. V.282. P. 2012–2018. 143. Tian S, Yan H, Klee EW. et al. Comparative analysis of de novo assemblers for variation discovery in personal genomes. Brief Bioinform. 2018. V.19(5). P.893-904. doi:10.1093/bib/bbx037 144. Tong S, Wang Y, Chen N. et al. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biol. 2022. V.23(1). 148. doi:10.1186/s13059-022-02718-7 145. Urra C, Sanhueza D, Pavez C. et al. Identification of grapevine clones via high-throughput amplicon sequencing: a proof-of-concept study. G3 (Bethesda). 2023. V.13(9). jkad145. doi:10.1093/g3journal/jkad145 146. Vondras AM, Minio A, Blanco-Ulate B. et al. The genomic diversification of grapevine clones. BMC Genomics. 2019. V.20(1). 972. doi:10.1186/s12864-019-6211-2 147. Voorrips RE, Tumino G. PolyHaplotyper: haplotyping in polyploids based on bi-allelic marker dosage data. BMC Bioinformatics. 2022. V.23(1). 442. doi:10.1186/s12859-022-04989-0 148. Wang B, Yang X, Jia Y. et al. High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads. Genomics Proteomics Bioinformatics. 2022. V.20(1). P.4-13. doi:10.1016/j.gpb.2021.08.003 149. Wang P, Yu J, Jin S. et al. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Hortic Res. 2021. V.8(1). 107. doi:10.1038/s41438-021-00542-x 150. Wang L, Li LL, Chen L. et al. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak (Quercus variabilis). Front Plant Sci. 2023. V.14. 1290913. doi:10.3389/fpls.2023.1290913 151. Wang S, Qian YQ, Zhao RP, Chen LL, Song JM. Graph-based pan-genomes: increased opportunities in plant genomics. J Exp Bot. 2023a. V.74(1). P.24-39. doi:10.1093/jxb/erac412 152. Wang S, Wang A, Chen R. et al. Haplotype-resolved chromosome-level genome of hexaploid Jerusalem artichoke provides insights into its origin, evolution, and inulin metabolism. Plant Commun. 2023b. 100767. doi:10.1016/j.xplc.2023.100767 153. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017. V.27(5). P.757-767. doi:10.1101/gr.214874.116 154. Wu B, Yu Q, Deng Z, Duan Y, Luo F, Gmitter FG Jr. A chromosome-level phased genome enabling allele-level studies in sweet orange: a case study on citrus Huanglongbing tolerance. Hortic Res. 2022. V.10(1). uhac247. doi:10.1093/hr/uhac247 155. Wu R, Kaiser AD. Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1968. V.35(3). P.523-537. doi:10.1016/s0022-2836(68)80012-9 156. Wu X, Simpson SA, Youngblood RC, Liu XF, Scheffler BE, Rinehart TA, Alexander LW, Hulse-Kemp AM. Two haplotype-resolved genomes reveal important flower traits in bigleaf hydrangea (Hydrangea macrophylla) and insights into Asterid evolution. Hortic Res. 2023. V.10(12). uhad217. doi:10.1093/hr/uhad217 157. Xie M, Yang L, Jiang C. et al. gcaPDA: a haplotype-resolved diploid assembler. BMC Bioinformatics. 2022. V.23(1). 68. doi:10.1186/s12859-022-04591-4 158. Xie WZ, Zheng YY, He W. et al. Two haplotype-resolved genome assemblies for AAB allotriploid bananas provide insights into banana subgenome asymmetric evolution and Fusarium wilt control. Plant Commun. 2023. 100766. doi:10.1016/j.xplc.2023.100766 159. Yan M, Li M, Wang Y. et al. Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of sweetpotato. Mol. Plant. 2024. doi:10.1016/j.molp.2023.12.019 160. Yang J, Moeinzadeh MH, Kuhl H. et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants. 2017. V.3(9). P.696-703. doi:10.1038/s41477-017-0002-z 161. Yang X, Zhang L, Guo X. et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol Plant. 2023. V.16(2). P.314-317. doi:10.1016/j.molp.2022.12.010 162. Yi L, Sa R, Zhao S. et al. Chromosome-Scale, Haplotype-Resolved Genome Assembly of Suaeda Glauca. Front Genet. 2022. V.13. 884081. doi:10.3389/fgene.2022.884081 163. Yow AG, Bostan H, Castanera R. et al. Improved High-Quality Genome Assembly and Annotation of Pineapple (Ananas comosus) Cultivar MD2 Revealed Extensive Haplotype Diversity and Diversified FRS/FRF Gene Family. Genes (Basel). 2021. V.13(1). 52. doi:10.3390/genes13010052 164. Yu RM, Zhang N, Zhang BW. Et al. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus. BMC Biol. 2023. V.21(1). 168. doi:10.1186/s12915-023-01668-1 165. Yu Y, Chen L, Miao X, Li SC. SpecHap: a diploid phasing algorithm based on spectral graph theory. Nucleic Acids Res. 2021. V.49(19). e114. doi:10.1093/nar/gkab709 166. Yuan S, Johnston HR, Zhang G, Li Y, Hu YJ, Qin ZS. One Size Doesn't Fit All - RefEditor: Building Personalized Diploid Reference Genome to Improve Read Mapping and Genotype Calling in Next Generation Sequencing Studies. PLoS Comput Biol. 2015. V.11(8). e1004448. doi:10.1371/journal.pcbi.1004448 167. Zhang B, Chen S, Liu J, Yan YB, Chen J, Li D, Liu JY. A High-Quality Haplotype-Resolved Genome of Common Bermudagrass (Cynodon dactylon L.) Provides Insights Into Polyploid Genome Stability and Prostrate Growth. Front Plant Sci. 2022. V.13. 890980. doi:10.3389/fpls.2022.890980 168. Zhang H, He Q, Xing L. et al. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. Plant Commun. 2023. V.26. 100677. doi:10.1016/j.xplc.2023.100677 169. Zhang Q, Li M, Chen X et al. Chromosome-Level Genome Assembly of Bupleurum chinense DC Provides Insights Into the Saikosaponin Biosynthesis. Front Genet. 2022a. V.13. 878431. doi:10.3389/fgene.2022.878431 170. Zhang Q, Qi Y, Pan H. et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat Genet. 2022b. V.54(6). P.885-896. doi:10.1038/s41588-022-01084-1 171. Zhang W, Luo C, Scossa F, Zhang Q, Usadel B, Fernie AR, Mei H, Wen W. A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants. Plant J. 2021. V.105(1). P.197-208. doi:10.1111/tpj.15051 172. Zhang X, Chen S, Shi L. et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat Genet. 2021a. V.53(8). P.1250-1259. doi:10.1038/s41588-021-00895-y 173. Zhang X., Wu R., Wang Y., Yu J., Tang H. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J. 2020. V.18. P.66-72. doi:10.1016/j.csbj.2019.11.011 174. Zhang X, Zhang S, Zhao Q, Ming R, Tang H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants. 2019. V.5(8). P.833-845. doi:10.1038/s41477-019-0487-8 175. Zheng Y, Yang D, Rong J. et al. Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). J Integr Plant Biol. 2022. V.64(3). P.649-670. doi:10.1111/jipb.13217 176. Zhou C, Olukolu B, Gemenet DC. et al. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nat Genet. 2020. V.52(11). P.1256-1264. doi:10.1038/s41588-020-00717-7 177. Zhou Q, Tang D, Huang W. et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat Genet. 2020a. V.52(10). P.1018-1023. doi:10.1038/s41588-020-0699-x 178. Zhou X, Batzoglou S, Sidow A, Zhang L. HAPDeNovo: a haplotype-based approach for filtering and phasing de novo mutations in linked read sequencing data. BMC Genomics. 2018. V.19(1). 467. doi:10.1186/s12864-018-4867-7 179. Zhou X, Zhang L, Weng Z, Dill DL, Sidow A. Aquila enables reference-assisted diploid personal genome assembly and comprehensive variant detection based on linked reads. Nat Commun. 2021. V.12(1). 1077. doi:10.1038/s41467-021-21395-x 180. Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, Beridze T, Cantu D, Gaut BS. The population genetics of structural variants in grapevine domestication. Nat Plants. 2019. V.5(9). P.965-979. doi:10.1038/s41477-019-0507-8 181. Zubov VV, Chemeris DA, Vasilov RG, Kurochkin VE, Alekseev YaI. Brief history of high-throughput nucleic acid sequencing methods. Biomics. 2021. V.13(1). P. 27-46. DOI: 10.31301/2221-6197.bmcs.2021-4 (In Russian)