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Resume 
Now most of the genomes of higher organisms are assembled for haploid set of chromosomes, in 
which DNA fragments from paired chromosomes from different parents alternate in the mosaic 
order. In this regard, such assemblies are more logical to consider as quasi-genomes, since they do 
not provide accurate information about the relationship between genotype and phenotype. A new 
level of genome assembly is haplotype-resolved diploid genomes of higher organisms, including 
plants and their polyploid forms that have undergone cytological and functional diploidization. 
Given the importance of such genome assemblies, a large number of corresponding computer 
programs have been developed that allow phased genome assembly and analysis. To date, 
haplotype-resolved diploid genomes have been assembled for more than 60 species of plants. 
Among them are various agricultural plants, ornamental plants, fruit trees and shrubs, forest trees, 
medicinal plants and others. For the most part, they are represented by diploid plants, but there are 
also triploids, auto- and allo-tetraploids, hexaploids and even octaploids. The sizes of the assembled 
genomes also vary greatly - from 135 million bp to 21.6 billion bp. In many articles it is note that 
phased genome assembly helped to more accurately determine individual important characteristics 
of the studied plants, including origin, evolution, domestication, yield, resistance to diseases and 
pests, as well as better understanding of metabolic pathways and mechanisms of heterosis.  
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Introduction 
Exactly half a century ago, in 1973, two papers 

were published [Gilbert, Maxam, 1973; Sanger et al., 
1973], in which the determination of DNA sequences of 
24 nucleotides (the lactose-repressor binding site) and 50 
nucleotides (a fragment of phage f1) was reported. Several 
years later two fast methods of DNA sequencing appeared 
[Maxam, Gilbert, 1977; Sanger et al., 1977]. But we will 
not dedicate in detail on the methods of DNA sequencing, 

as the history of their development in the last quarter of 
the 20th century is quite detailed by us earlier [Chemeris et 
al., 1999]. In another our work, we briefly reviewed the 
evolution of DNA sequencing methods of new generations 
[Zubov et al., 2021]. However, we can also recommend 
referring to another article, briefly describing the 
development of DNA sequencing methods of different 
generations over the past 40 years [Shendure et al., 2017]. 
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Now the speed of sequencing in general 
compared to the same 1973 increased by trillions of times, 
and only in the last quarter of a century the cost of 
sequencing decreased by about a million times. This led to 
the possibility of sequencing complete genomes in a very 
short time and at an affordable price. To date, more than a 
thousand plant genomes belonging to more than 800 
species and subspecies have been sequenced with varying 
degrees of completeness. 

In the second half of the 1990s, even before the 
human genome was read, a catchy phrase appeared - 
"postgenome era" [Nowak, 1995]. For plants, this phrase 
appeared shortly after the completion of the sequencing 
Arabidopsis genome [Jander et al., 2002]. However, its use 
was premature, as the post-genomic era has not yet arrived, 
because modern genomes of higher organisms including 
plants are consist of consensus sequences from their parents 
in mosaic order and moreover from haploid set of 
chromosomes whereas phenotype depends on full (diploid) 
set of chromosomes. Thus, such genomes can be considered 
as quasihaploid genomes or quasi-genomes.  

References genomes 
If we do not take into account the sequencing of 

the yeast genome, then the first sequenced eukaryotic 
genomes in draft versions at the turn of the centuries were 
the genomes of model organisms - nematode 
Caenorhabditis elegans [The C. elegans Sequencing 
Consortium, 1998], fruit fly Drosophila melanogaster 
[Adams et al., 2000], Arabidopsis thaliana [The 
Arabidopsis Genome Initiative, 2000], as well as the 
human genome Homo sapiens [Lander et al., 2001; Venter 
et al., 2001]. Such genomes sequenced the first for any 
group of organisms have got designation as reference 
genomes for the species.  

DNA polymorphism is much more than expected. 
In addition to the most massive Single-Nucleotide 
Polymorphism (SNP), much more contribution to the 
phenotypic manifestations is made by changes in the 
genome in the form of various Structural Variation (SV), 
including Insertion / Deletion (InDel), Copy Number 
Variations (CNV), Presence / Absence Variations (PAV), as 
well as translocations and inversions (TrIn) of genome 
regions. It was necessary to display these differences 
between the sequenced samples, for which the concept of 
"pangenome" was quite suitable, which should be 
considered as a kind of set of all genes, regulatory elements 
and non-coding regions present in different samples of the 
studied group.  

Pangenomes 
The term "pangenome" was proposed in 2005 to 

describe the genomes of several different isolates of the 
bacteria Streptococcus agalactiae [Tettelin et al., 2005]. 
Later, this term was extended to other organisms. The 

concept of plant pangenome was first proposed in 2007 
when analyzing partially sequenced genomes of maize, 
revealing significant differences between the inbred lines 
Mo17 and B73, indicating that one reference genome of 
the species does not provide all the completeness of 
information [Morgante et al., 2007]. Subsequently, 
information on the diversity of genomes of one species 
continued to accumulate. Large-scale sequencing of plant 
pangenomes began in 2010, when the complete genomes 
of 6 inbred lines of maize [Lai et al., 2010], as well as 17 
wild and 14 cultivated samples of soybean [Lam et al. 
2010] were sequenced. 

Only in the last couple of years, there have been 
many reviews on this topic, among which there are many 
that directly link pangenomics with the improvement of 
agricultural crops, as well as contain an analysis of 
relevant resources and specialized software tools [Hameed 
et al., 2022; Petereit et al., 2022; Tay Fernandez et al., 
2022; Naithani et al., 2023; Shi et al., 2023; Wang et al., 
2023a]. In them, one can find statements that agricultural 
science has entered the pangenomic era, and this is quite 
fair. In one of the articles, a timeline provides information 
on almost three dozen pangenomes of agricultural plants, 
with mention in some cases of haplotype assembly [Li et 
al., 2022]. At the same time, it was previously directly 
indicated that haplotype phasing (i.e. sequencing of 
diploid genomes) is a new frontier in the assembly of plant 
pangenomes [Michael, VanBuren, 2020], required for 
breeding work of a new quality. 

Diploid genome sequencing 
So, the top level of assembly of the nuclear 

genetic material of higher organisms can only be diploid, 
assembled on chromosome level. It must be read in T2T 
format, for which it is necessary to perform haplotype 
assembly of phased DNA regions exclusively de novo. 
This requires a significantly increased coverage of the 
genome during its sequencing and a combination of less 
accurate long/ultra-long reads with high-precision short 
reads. It also involves the use of other approaches: optical 
mapping, Hi-C sequencing, gamete binning, Strand-seq, 
linked-read sequencing and/or trio-sequencing, and the 
application of appropriate programs and algorithms for 
such phased assembly, of which more than fifty have 
already been created.  

Despite the fact that phased assembly of diploid 
genomes of higher organisms remains rare, nevertheless, 
individual researchers have been conducting it for quite a 
long time. Many computer programs have been 
developed and now there is a whole arsenal of them, 
designed for using different source data. In this regard, 
one can pay attention to the review [Zhang et al., 2020], 
in which a stable trend in whole-genome sequencing for 
the restoration of phased diploid genomes is noted and 
confidence is expressed that in the coming years this will 
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become a routine procedure. Even more detailed, similar 
computer programs are considered in the review [Garg, 
2021], where they were divided into groups by purpose; 
among others, it contains several programs that allow 
conducting such phased assembly de novo of polyploid 
genomes. In another recent review article [Guk et al., 
2022], devoted to phased assembly of genomes, along 
with other programs, the assembler TrioCANU is 
mentioned, which implies operating with genomes of 
parental forms and their offspring. A lot of useful 
information is contained in a recent review, devoted to 
programs-assemblers of phased sequences [Duitama, 
2023]. 

A significant part of the phased sequence 
assembly programs for the reconstruction of diploid 
genomes and their analysis appeared in the last couple of 
years – JTK [Masutani et al., 2023], Verkko [Rautiainen et 
al., 2023], GameteBinning_prac [Sun et al., 2023], 
mLinker [Sinha, Zhang, 2023], flopp [Shaw, Yu, 2022], 
HaploMaker [Fruzangohar et al., 2022], HaploSync 
[Minio et al., 2022], gcaPDA [Xie et al., 2022], 
LongPhase [Lin et al., 2022], PolyHaplotyper [Voorrips, 
Tumino, 2022], SubPhaser [Jia et al., 2022] and others. 
However, some of similar software products have a longer 
history, as can be seen from Table 1. 

Given that many plants are characterized by 
polyploidy, programs for assembling such genomes in a 
phased manner in table 1 are especially distinguished. 
As for other programs, some of them allow further 
improvement of the assembly produced, as well as 
visualization of the results, including those oriented to 
polyploid organisms.  

A special mention deserves the new assembly 
program Verkko, or rather a pipeline of several software 
products, which was used to assemble the most complete 
diploid human genome, based on the reference genome 
T2T-CHM13, which allowed 20 out of 46 chromosomes 
to be restored with 99.9997% accuracy [Rautiainen et 
al., 2023]. Previously developed assemblers were 
designed for hybrid assembly of long and short reads, 
while Verkko takes long and ultra-long reads into 
analysis, and this is the success in phased chromosome-
level assembly in T2T format.  

Despite of that some of the above-mentioned 
programs were originally developed for assembling the 
human genome, but since the general structure of 
eukaryotic genomes is similar, they can theoretically be 
suitable for plant diploid genomes, although plant 
genomes usually carry more repetitive DNA. Moreover, 
many plants are polyploids, which makes assembly more 
difficult.  

We will not consider in more detail all these 
programs for assembling and analyzing phased diploid 
genomes, since this is the topic of a separate article.  

Table 1. 
Some programs for assembly and analysis of phased 

diploid genomes of higher organisms 
Approach Program Reference 

RefEditor Yuan et al., 2015 
FALCON-Unzip Chin et al., 2016 
HapCUT2 Edge et al., 2017 
WhatsHap Garg et al., 2018 
Aquila Zhou et al., 2021 
HaploMaker Fruzangohar et al., 2022 
HaploSync Minio et al., 2022 
LongPhase Lin et al., 2022 
mLinker Sinha, Zhang, 2023 
Verkko Rautiainen et al., 2023 
JTK Masutani et al., 2023 

Polyploid genomes 
HapTree-X Berger et al., 2015 
Hap10 Majidian et al., 2020 
Ranbow Moeinzadeh et al., 2020 

R
ef

er
en

ce
-b

as
ed

 p
h

as
in

g 
nPhase Abou Saada et al., 2021 
Supernova Weisenfeld et al., 2017 
SGVar Tian et al., 2018 
Platanus-allee Kajitani et al., 2019 
phasebook Luo et al., 2021 
DipAsm Garg et al., 2021 
hifiasm Cheng et al., 2021 
SpecHap Yu et al., 2021 
FALCON-Phase Kronenberg et al., 2021 
WHdenovo Garg et al., 2020 

Polyploid genomes 
POLYTE Baaijens, Schonhuth, 2019 
ALLHiC Zhang et al., 2019 
SDip Heller et al., 2020 
flopp Shaw, Yu, 2022 

D
e 

no
vo

  a
ss

em
b

ly
 

SubPhaser Jia et al., 2022 
TrioCanu Koren et al., 2018 
HAPDeNovo Zhou et al., 2018 

Trio-
binning 

trioPhaser Miller, Piccolo, 2021 
gcaPDA Xie et al., 2022 Gamete-

binning GameteBinning
_prac 

Sun et al., 2023 

Odintifier 
Samaniego Castruita et 
al., 2015 

HaploMerger2 Huang et al., 2017 
Purge Haplotigs Roach et al., 2018 
Samovar Darby et al., 2019 
purge_dups Guan et al., 2020 
SVIM-asm Heller, Vingron, 2020 
VISOR Bolognini et al., 2020 
PRINCESS Mahmoud et al., 2021 
Hapo-G Aury, Istace, 2021 
HapSolo Solares et al., 2021 

Polyploid genomes 
AltHap Hashemi et al., 2018 
CompHapDet Sankararaman et al., 2020 
PolyCluster Mazrouee et al., 2020 

O
th

er
 p

ro
gr

am
s 

PolyHaplotyper Voorrips, Tumino, 2022 
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Genomes and diploid genomes of plants 
More than a thousand complete quasi-genomes of 

plants with varying degrees of completeness are already 
known, and approximately 40% of them are made on the 
chromosome-level assembly [Sun et al., 2022]. T2T-
genomes have been fully or partially sequenced in recent 
years for several plant species - maize Zea mays [Liu et al., 
2020], banana Musa acuminata [Belser et al., 2021], 
watermelon Citrullus lanatus [Deng et al., 2022], rice Oryza 
sativa [Zhang et al., 2022], Arabidopsis [Wang et al., 
2022a], potato Solanum tuberosum [Yang et al., 2023], 
bitter melon Momordica charantia [Fu et al., 2023]. There 
is no doubt that this list will expand soon. Recently, it was 
described in detail how to sequence plant genomes in such a 
way that they end with the T2T assembly format [Naito, 
2023]. Also, in another recent review, it is emphasized that 
the era of T2T plant genomes assembled without gaps from 
telomere to telomere has arrived [Gladman et al., 2023]. It is 
hard to disagree with this, but knowledge of diploid 
genomes and pan-genomes is also needed. Previously, in a 
review article dedicated to plant genomes with known sizes 
from 135 Mb to 16.9 Gb, assembled at the chromosome 
level, which were known at that time for 114 species, 
special attention was paid to the issue of prospective 
assembly of phased genomes [Shirasawa et al., 2021]. 

Compared to a thousand quasi-haploid plant 
genomes, relatively few genomes have been assembled in 
haplotype-resolved format so far. Nevertheless, almost 
hundred diploid phased genomes belonging to more than 
60 species of plants have been assembled with varying 
degrees of completeness. Among them are various 
agricultural plants, ornamental plants, fruit trees and 
shrubs, forest trees, medicinal plants and others. These 
plants are mostly diploids, but there are also triploids, 
tetraploids (auto- and allo-), hexaploids and even 
octaploids. The sizes of the assembled genomes also vary 
considerably - from 135 Mb in arabidopsis to 21.6 Gb in 
artichoke. Moreover, in many studies it is noted that 
phased genome assembly helped to better understand some 
important traits characteristic of the studied plants, 
including their origin, evolution, domestication, yield, 
disease and pest resistance, metabolic pathways, and 
heterosis mechanisms.  

It is not surprising that one of the first plants with 
a phased genome was the model plant with a small 
genome - Arabidopsis thaliana. For this, the technology of 
trio-sequencing of the hybrid and its parental forms was 
used, and for comparative analysis the reference genome 
TAIR10 [Chin et al., 2016] was used. The same paper also 
presents data on sequencing the diploid genome of grape 
Vitis vinifera variety Cabernet Sauvignon, characterizing 
by a high level of heterozygosity, which facilitated the 
assembly of phased sequences. And grapes need to be 
given special attention, since for no other species so many 

phased, haplotype-resolved genomes have been 
assembled. 

Grapevine became the fourth plant species for 
which their quasi-genomes were sequenced [The French-
Italian Public Consortium for Grapevine Genome 
Characterization, 2007]. The recently published book The 
Grape Genome describes the strategies for sequencing and 
assembling grapevine genomes, including haplotyped ones 
[Figuerosa-Balderas et al., 2019]. After the first paper on 
phasing the diploid genome of Cabernet Sauvignon grape 
variety, work on its improvement was continued [Minio et 
al., 2017]. Later, diploid genomes of a whole range of 
varieties were sequenced by different authors [Roach et 
al., 2018; Vondras et al., 2019; Zhou et al., 2019; Minio et 
al., 2019; 2022; Solares et al., 2021; Maestri et al., 2022; 
Smit et al., 2020]. Due to the assembly of phased genomes 
for a number of grape varieties, further studies of genome 
polymorphism in many cases were carried out taking into 
account the obtained data. Thus, using the improved 
chromosome-scale Cabernet Savignon genome sequence 
and phased assembly of nine wild and cultivars of grape, it 
was found that dioecy, characteristic of wild species, was 
lost during domestication, and a putative region in the 
genome responsible for it was identified [Massonnet et al., 
2020]. An approach for identifying grape clones based on 
amplicon sequencing was developed [Urra et al., 2023]. 
Comparing the phased genomes of Merlot grape variety 
and its parental forms, a characteristic chimerism for it 
was detected [Sichel et al., 2023]. In addition to V.vinifera, 
phased genomes have been obtained for other species of 
this genus - V.riparia, V.rupestris, V.berlandieri [Minio et 
al., 2022], for the hybrid V.labruscana × V.vinifera 
[Shirasawa et al., 2022] and for the resistant to powdery 
mildew species Muscadinia rotundifoila [Cochetel et al., 
2021; Massonnet et al., 2022], for the sample Gf.99-03, 
originating from the also resistant to downy mildew 
disease grape species V.amurensis, having the variety 
“Michurinets” as one of the predecessors [Frommer et al., 
2023]. Recently, based on the phased genomes of nine 
wild North American grape species V.acerifolia, 
V.aestivalis, V.arizonica, V.berlandieri, V.girdiana,
V.monticola, V.mustangensis, V.riparia, V.rupestris their
super-pangenome was created [Cochetel et al., 2023].

Another woody climbing shrub, for which a phased 
genome assembly was performed, became kiwi fruit Actinidia 
chinensis, as well as A.latifolia, and their diploid genomes 
were assembled in T2T format with high accuracy [Han et al., 
2023]. Also, phased genomes have been assembled for a 
whole range of fruit crops: mango Mangifera indica [Mango 
Genome Consortium, 2021], persimmon Diospyros kaki [Li 
et al., 2023], lychee Litchi chinensis [Hu et al., 2022], sweet 
orange Citrus sinensis [Wu et al., 2022], C.australis 
[Nakandala et al., 2023], various cultivars of apple tree Malus 
domestica [Sun et al., 2020; Khan et al., 2022, Švara et al., 
2023], hybrid cherry trees Cerasus × yedoensis [Shirasawa et 
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al., 2019] and Cerasus × kanzakura [Shirasawa et al., 2021a], 
pear Pyrus bretschneideri [Shi et al., 2019], apricot Prunus 
armeniaca [Campoy et al., 2020]. 

Other crops that are consumed in one form or 
another and for which phased genomes have been 
assembled are: sugarcane Saccharum spontaneum with 32 
and 40 chromosomes [Zhang et al., 2018; 2022b], 
pineapple Ananas comosus [Nashima et al., 2022; Yow et 
al., 2022], triploid banana Musa acuminata [Huang et al., 
2023; Liu et al., 2023a; Xie et al., 2023], tetraploid 
blueberry Vaccinum corymbosum [Colle et al., 2019; 
Mengist et al., 2023], octaploid strawberry Fragaria × 
ananasa [Cheng et al., 2021; Hardigan et al., 2021; Jin et 
al., 2023; Mao et al., 2023], tea Camellia sinensis [Wang 
et al., 2021; Zhang et al., 2021; 2021a], hop Humulus 
lupulus [Padgitt-Cobb et al., 2020], Vanilla planifolia [Piet 
et al., 2022], diploid potato Solanum tuberosum [Zhou et 
al., 2020a], tetraploid potato S.tuberosum [Bao et al., 
2022; Hoopes et al., 2022; Shaw, Yu, 2022; Sun et al., 
2022], hexaploid sweet potato Ipomoea batatas [Yang et 
al., 2017; Moeinzadeh et al., 2020; Yan et al., 2024], 
maize Zea mays [Cheng et al., 2021]; cassava Manihot 
esculenta [Mansfeld et al., 2021; Long et al., 2022; Qi et 
al., 2022; Landi et al., 2023], pepper Capsicum annuum 
[Hulse-Kemp et al., 2018], hybrid pepper C.annuum 
[Delorean et al., 2023]; artichoke Helianthus tuberosus 
[Wang et al., 2023b]. A phased diploid genome of the 
agricultural plant alfalfa Medicago sativa, used as animal 
feed, was also assembled [Chen et al., 2020; Shen et al., 
2020; Long et al., 2022a]. Another herbaceous plants 
whose phased genomes were assembled are lawn grass 
Zoysia japonica [Zhou et al., 2020] and tetraploid 
Shepherd’s Purse Capsella bursa-pastoris [Moeinzadeh et 
al., 2020].  

From medicinal plants, diploid genomes were 
assembled for several species: ginger Zingiber officinale 
[Cheng et al., 2021a; Li et al., 2021], Suaeda glauca [Yi et 
al., 2022; Cheng et al., 2023], Bupleurum chinense [Zhang 
et al., 2022a], baiji Bletilla striata [Jiang et al., 2022], 
patchouli Pogostemon cablin [Shen et al., 2022], mugwort 
Artemisia annua [Liao et al., 2022], rhubarb Rheum 
officinale [Zhang et al., 2023], wheel wingnut Cyclocarya 
paliurus [Yu et al., 2023]; buzhaye Microcos paniculata 
[Liu et al., 2023]. 

Among ornamental plants, diploid genomes have 
been assembled for the following species: hydrangea 
Hydrangea macophylla [Nashima et al., 2021; Wu et al., 
2023], threefork morning glory Ipomoea trifida [Zhou et al., 
2020], hexaploid Chrysanthemum [Voorrips, Tumino, 2022], 
bermudagrass Cynodon dactylon [Zhang et al., 2022].  

Among woody plants, diploid genomes have been 
determined for triploid poplar Populus tomentosa [Tong et 
al., 2022], hexaploid bamboo Dendrocalamus latiflorus 
[Zheng et al., 2022], interspecific hybrid Eucalyptus 
grandis × E.urophylla [Lötter et al., 2022], California 

redwood Sequoia sempervirens [Cheng et al., 2021]; oak 
Quercus glauca [Luo et al., 2023], cork oak Q.variabilis 
[Wang et al., 2023], honey plant - paperbark tree 
Melaleuca quinquenervia [Chen et al., 2023].  

Special attention should be paid to some species. 
In order to construct phased genome pear 
P.bretschneideri, it was decided to sequence DNA from 12
pollen grains (actually gametes), which also allowed to
obtain information about the features of recombination
occurring in meiosis [Shi et al., 2019]. The comparison of
phased haplotypes with the reference genome confirmed
its mosaic structure, which, however, is not surprising. At
the same time, the authors noted previously impossible
analysis of allelic effects in pear gene expression with the
genome of a regular quasi-haploid assembly. Sequencing
445 pollen grains, other authors reconstructed the phased
diploid genome of apricot P.armeniaca at the level of
pseudochromosomes with 99% accuracy [Campoy et al.,
2020]. By performing a phased assembly of 135 single
sperm cells of tea, it was possible to establish some places
of crossing over [Zhang et al., 2021].

No less interest is aroused by sequencing in a 
phased haplotype format of the genomes of a dioecious 
plant Asparagus kiusianus, belonging to male and female 
individuals, which, as expected, can help better understand 
the mechanisms that determine the sex of such plants 
[Shirasawa et al., 2022a].  

There is no doubt that the number of plants whose 
diploid genomes will be sequenced will soon increase, as 
there is a certain trend in whole-genome sequencing to 
restore phased diploid genomes, for which a large number 
of specialized programs have already been created for their 
assembly, which has already been noted above. 

We are also interested in sequencing the diploid 
genome of the wild diploid wheat Triticum sinskajae, whose 
draft quasi-genome of about 5 billion bp we have recently 
assembled. Earlier, we sequenced the chloroplast genome of 
this wheat species [Kuluev et al., 2020], as well as similar 
genome of the einkorn T.monococcum, in the collection 
plantings of which the Sinskaya wheat was found. The data 
we obtained indicate that these are different species of 
wheat [Kuluev et al., 2024]. In this regard, it should be 
noted that the full quasi-genome of T.monococcum was 
recently sequenced [Ahmed et al., 2023]. 

Conclusion 
There are already many examples of diploid 

genomes for different higher organisms, including plants 
and this gives confidence that in the future haplotype-
resolved sequencing will become massive and quite 
affordable although one is much more difficult than 
sequencing quasi-genomes. In a recent review [Kong et al., 
2023], it is said that accurate, gap-less, telomere-to-
telomere, and fully phased complex plant genomes could 
soon become routine. But this requires a fundamentally 
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different DNA sequencing. We have repeatedly drawn 
attention to the need for sequencing diploid genomes 
[Kuluev et al, 2020; Baymiev et al., 2022; Chemeris et al., 
2023] and we are working on it. 

Sequencing the entire DNA of the full set of 
chromosomes of higher organisms, collected in the format 
from telomere to telomere - T2T haplotype-resolved 
genome - is undoubtedly a new level of genomic 
knowledge that will provide very important information, 
missing now for most eukaryotic species. After the 
emergence of available technology for sequencing and 
assembling diploid genomes, all known quasi-genomes 
will have to be sequenced again and assembled in a phased 
T2T format.  

And until this level is massively achieved, there 
can be no talk of a “post-genomic era” or “post-genomic 
technologies”. At the same time, there is a firm confidence 
that such an era will come, and, as far as we can judge, 
quite soon.  
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