Пероксидазы бактерий в биоремедиации
22.04.2024
Авторы:
Название:
Пероксидазы бактерий в биоремедиации
Страницы:
138-148
В мире все более острой становится проблема загрязнения окружающей среды трудноразлагаемыми токсичными соединениями, образующимися в результате работы промышленных предприятий, сельскохозяйственного производства и других видов деятельности человека. Различные физические и химические методы рекультивации и ремедиации имеют серьезные ограничения, такие как высокая стоимость, трудоемкость, а также нарушение эколого-трофической структуры и сукцессионные изменения экосистем. Каталитическое разложение загрязняющих веществ с помощью ферментов может составить конкуренцию классическим методам очистки окружающей среды от экополлютантов. Пероксидазы – широко распространенные ферменты, относящиеся к классу оксидоредуктаз, которые могут разрушать углеродный каркас сложных органических соединений. В этом обзоре представлены последние исследования в области применения бактериальных пероксидаз в качестве экологически чистых катализаторов для биоремедиации загрязненных экосистем.
- Aghayani E., Moussavi G., Naddafi K. Improved peroxidase-mediated biodegradation of toluene vapors in the moving-bed activated sludge diffusion (MASD) process using biosurfactant-generating biomass stimulated with H2O2. // J. Hazard. Mater. 2019. V. 361. P. 259–266. doi:10.1016/j.jhazmat.2018.08.076 2. Anbu P.; Gopinath S.C.B., Cihan A.C., Chaulagain B.P. Microbial enzymes and their applications in industries and medicine. // BioMed. 2017. 2017:2195808. doi:10.1155/2017/2195808 3. Anjaneyulu Y., Sreedhara Chary N., Samuel Suman Raj D. Decolourization of industrial effluents–available methods and emerging technologies–a review. // Reviews in Environmental Science and Bio/Technology. 2005. V. 4. P. 245-273. doi:10.1007/s11157-005-1246-z 4. Bansal N., Kanwar S.S. Peroxidase(s) in environment protection. // Sci World J. 2013. doi:10.1155/2013/714639 5. Baratpour P., Moussavi G. The accelerated biodegradation and mineralization of acetaminophen in the H2O2-stimulated upflow fixed-bed bioreactor (UFBR). // Chemosphere. 2018. V. 210. P. 1115–1123. doi:10.1016/j.chemosphere.2018.07.135 6. Bharagava R.N., Mani S., Mulla S.I., Saratale G.D. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. // Ecotoxicol. Environ. Saf. 2018. V. 156. P. 166–175. doi:10.1016/j.ecoenv.2018.03.012 7. Bouacem K., Rekik H., Jaouadi N.Z., Zenati B., Kourdali S., El Hattab M., Badis A., Annane R., Bejar S., HaceneH., Bouanane-Darenfed A., Jaouadi B. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera Adusta strain CX-9. // Int. J. Biol. Macromolecules. 2018. V. 106. P. 636–646. doi:10.1016/j.ijbiomac.2017.08.061 8. Chandra R., Abhishek A., Sankhwar M. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. // Bioresource Technology. 2011. V. 102 (11). P. 6429–6436. doi:10.1016/j.biortech.2011.03.048 9. Chanwun T., Muhamad N., Chirapongsatonkul N., Churngchow N. Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization. // AMB Express. 2013. V. 3. P. 14. doi:10.1186/2191-0855-3-14 10. Dargahi A., Mohammadi M., Amirian F., Karami A., Almasi A. Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM). // Desalination and Water Treatment. 2017. V. 87. P. 199-208. doi:10.5004/dwt.2017.21064 11. Draelos Z.D. A split-face evaluation of a novel pigment-lightening agent compared with no treatment and hydroquinone. // J. Am. Acad. Dermatol. 2015. V. 72. P. 105–107. doi:10.1016/j.jaad.2014.09.011 12. Falade A., Mabinya L., Okoh A., Nwodo U. Peroxidases produced by new ligninolytic bacillus strains isolated from marsh and grassland decolourized anthraquinone and azo dyes. // Pol. J. Environ. Stud. 2019. V. 28 (5) P. 3163–3172. doi:10.15244/pjoes/92520 13. Falade A.O., Eyisi O.A.L., Mabinya L.V., Nwodo U.U., Okoh A.I. Peroxidase production and ligninolytic potentials of freshwater bacteria Raoultella ornithinolytica and Ensifer adhaerens. // Biotechnol. Rep. 2017. V. 16. P. 12–17. doi:10.1016/j.btre.2017.10.001 14. Falade A., Jaouani A., Mabinya L., Okoh A., Nwodo, U. Exoproduction and molecular characterization of peroxidase from Ensifer adhaerens. // Appl. Sci. 2019a. V. 9 (15). P. 3121. doi:10.3390/app9153121 15. Falade A.O., Mabinya L.V., Okoh A.I., Nwodo U.U. Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation. // Bioresources and Bioprocessing. 2020. V. 7. P. 1-9. doi:10.1186/s40643-020-00345-3 16. Fall I., Czerwiec Q., Abdellaoui S., Doumeche B., Ochs M., Remond C., Rakotoarivonina H. A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. // Appl. Microbiol. Biotechnol. 2023. V. 107(1). P. 201-217. doi:10.1007/s00253-022-12263-9 17. Furukawa T., Bello F.O., Horsfall L. Microbial enzyme systems for lignin degradation and their transcriptional regulation. // Frontiers in Biology. 2014. V. 9. P. 448-471. doi:10.1007/s11515-014-1336-9 18. Ganesh P, Dineshraj D, Yoganathan K. Production and screening of depolymerising enymes by potential bacteria and fungi isolated from plastic waste dump yard sites. // Int. J. Appl. Res. 2017. V. 3. P. 693–695. 19. Garlapati V.K., Chandel A.K., Kumar S.J., Sharma S., Sevda S., Ingle A.P., Pant D. Circular economy aspects of lignin: towards a lignocellulose biorefinery. // Renewable and Sustainable Energy Reviews. 2020 V. 130. doi:10.1016/j.rser.2020.109977 20. Gogoleva O.A., Nemtseva N.V., Bukharin O.V. Сatalase activity of hydrocarbon-oxidizing bacteria. // Applied Biochemistry and Microbiology. 2012. V. 48 (6). P. 552-556. doi:10.1134/S0003683812060051 21. Gopi V., Upgade A., Soundararajan N. Bioremediation potential of individual and consortium Non-adapted fungal strains on Azo dye containing textile effluent. // Adv. Appl. Sci. Res. 2012. V. 3. P. 303–311. 22. Gore S., Khotha A., Nevgi D. The use of horse radish peroxidase, an eco-friendly method for removal of phenol from industrial effluent. // J. Environ. Sci. Toxicol. Food Technol. 2017. V.11 P. 7–13. doi:10.9790/2402-1103010713 23. Grover R., Marwaha S.S., Kennedy J.F. Studies on the use of an anaerobic baffled reactor for the continuous anaerobic digestion of pulp and paper mill black liquors. // Process Biochemistry. 1999. V. 34(6-7). P. 653–657. doi:10.1016/S0032-9592(98)00138-1 24. Hakala T.K., Hilden K., Maijala P., Olsson C., Hatakka A. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. // Appl. Microbiol. Biotechnol. 2006. V. 73(4). P. 839–849. doi:10.1007/s00253-006-0541-0. 25. Hamelinck C.N., Van Hooijdonk G., Faaij A.P. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. // Biomass and Bioenergy. 2005. V. 28(4). P. 384-410. doi:10.1016/j.biombioe.2004.09.002 26. Hamid H., Rehman K.U. Potential applications of peroxidases. // Food Chemistry. 2009. V. 115(4). P. 1177–1186. doi:10.1016/j.foodchem.2009.02.035 27. Harayama S. Polycyclic aromatic hydrocarbon bioremediation design. // Current Opinion in Biotechnology. 1997. V. 8(3). P. 268–273. doi:10.1016/S0958-1669(97)80002-X 28. Harford-Cross C.F., Carmichael A.B., Allan F.K., England P.A., Rouch D.A., Wong L.L. Protein engineering of cytochrome P458(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. // Protein Engineering. 2000. V. 13(2). P. 121–128. doi:10.1093/protein/13.2.121 29. Hariharan S., Nambisan P. Optimization of lignin peroxidase, manganese peroxidase and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. // BioResources. 2013. V. 8. P. 250–271. doi:10.15376/biores.8.1.250-271 30. Heinfling A., Martínez M.J., Martínez A.T., Bergbauer M., Szewzyk U. Transformation of Industrial Dyes by Manganese Peroxidases from Bjerkandera Adusta and Pleurotus Eryngii in a Manganese-independent Reaction. // Appl. Environ. Microbiol. 1998. V. 64. P. 2788–2793. doi:10.1128/aem.64.8.2788-2793.1998 31. Huang X., Pan J., Liang B., Sun J., Zhao Y., Li, S. Isolation, characterization of a strain capable of degrading imazethapyr and its use in degradation of the herbicide in soil. // Current Microbiology. 2009. V. 59(4). P. 363–367. doi:10.1007/s00284-009-9442-7 32. Huber P., Carre B. Decolorization of process waters in deinking mills and similar applications: a review. // BioResources. 2012. V. 7 (1). P. 1366–1382. doi:10.15376/biores.7.1.1366-1382 33. Husain Q. Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. // Reviews in Environmental Science and Bio/Technology. 2010. V. 9. P. 117-140. doi:10.1007/s11157-009-9184-9 34. Ijoma G.N., Selvarajan R., Tekere M. The potential of fungal co-cultures as biological inducers for increased ligninolytic enzymes on agricultural residues. // Int. J. Environ. Sci. Technol. 2018. doi:10.1007/s13762-018-1672-4 35. Ikehata K., Pickard M.A., Buchanan I.D., Smith D.W. Optimization of extracellular fungal peroxidase production by 2 Coprinus species. // Can. J. Microbiol. 2004. V. 50. P. 1033–1040. doi:10.1139/w04-098 36. Kanwar S.S., Bansal N. Decolorization of industrial dyes by an extracellular peroxidase from Bacillus sp. F31. // JAM. 2014. V. 1. P. 252–265. 37. Karigar C.S., Rao S.S. Role of microbial enzymes in the bioremediation of pollutants: a review. // Enzyme Research. 2011. doi:10.4061/2011/805187 38. Khalid A., Arshad M., Crowley D.E. Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. // Water Research. 2009. V. 43(4). P. 1110–1116. doi:10.1016/j.watres.2008.11.045 39. Khatoon N., Jamal A., Ali M.I. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. // Environ Technol. 2019. V. 40(11). P. 1366-1375. doi:10.1080/09593330.2017.1422550 40. Khelil O., Choubane S., Cheba B.A. Co-production of cellulases and manganese peroxidases by Bacillus sp. R2 and Bacillus cereus 11778 on waste newspaper: application in dyes decolourization. // Procedia Technol. 2015. V. 19. P. 980–987. doi:10.1016/j.protcy.2015.02.140 41. Khmelevtsova L.E., Sazykin I.S., Azhogina T.N., Sazykina M.A. Procaryotic Peroxidases and Their Application in Biotechnology (Review). // Applied Biochemistry and Microbiology. 2020. V. 56(4) P. 373-380. doi:10.1134/S0003683820030059 42. Kirby N., McMullan G., Marchant R. Decolourisation of an artificial textile effluent by Phanerochaete chrysosporium. // Biotechnology Letters. 1995. V. 17(7). P. 761–764. 43. Krueger M.C., Harms H., Schlosser D. Prospects for microbiological solutions to environmental pollution with plastics. // Appl. Microbiol. Biotechnol. 2015. V. 99(21). P. 8857–8874. doi:10.1007/s00253-015-6879-4 44. Kumar A., Singh A.K., Ahmad S., Chandra R. Optimization of laccase production by Bacillus sp strain AKRC01 in presence of agro-waste as effective substrate using response surface methodology. // J Pure Appl. Microbiol. 2020. V. 14(1). P. 1–12. doi:10.22207/JPAM.14.1.36 45. Leu C., Singer H., Stamm C., Müller S.R., Schwarzenbach R.P. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. // Environmental Science & Technology. 2004. V. 38(14). P. 3835-3841. doi:10.1021/es0499593 46. Leung A., Shankar P.M., Mutharasann R. A review of fiber-optic biosensors. // Sensors and Actuators B: Chemical. 2007. V. 125(2). P. 688-703. doi:10.1016/j.snb.2007.03.010 47. Longoria A., Tinoco R., Vázquez-Duhalt R.. Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. // Chemosphere. 2008. V. 72(3). P. 485–490. doi:10.1016/j.chemosphere.2008.03.006 48. Malik A. Metal bioremediation through growing cells. // Environment International. 2004. V. 30(2). P. 261–278. doi:10.1016/j.envint.2003.08.001 49. McCauley L.A., Anger W.K., Keifer M., Langley R., Robson M.G., Rohlman D. Studying health outcomes in farmworker populations exposed to pesticides. // Environmental Health Perspectives. 2006. V. 114 (6). P. 953–960. doi:10.1289/ehp.8526 50. Mercer D.K., Iqbal M., Miller P.G.G., McCarthy A.J. Screening actinomycetes for extracellular peroxidase activity. // Appl. Environ. Microbiol. 1996. V. 62. P. 2186–2190. doi:10.1128/aem.62.6.2186-2190.1996 51. Mohammadi S., Kargari A., Sanaeepur H., Abbassian K., Najafi A., Mofarrah E. Phenol removal from industrial wastewaters: a short review. // Desalination and Water Treatment. 2005. V. 53 (8). P. 2215-2234. doi:10.1080/19443994.2014.883327 52. Mousavi S.M., Hashemi S.A., Iman Moezzi S.M., Ravan N., Gholami A., Lai C.W., Chiang W.H., Omidifar N., Yousefi K., Behbudi G. Recent advances in enzymes for the bioremediation of pollutants. // Biochemistry Research International. 2021. 2021:5599204. doi:10.1155/2021/5599204 53. Moussavi G., Haddad F.A. Bacterial peroxidase-mediated enhanced biodegradation and mineralization of bisphenol A in a batch bioreactor. // Chemosphere. 2019. V. 222. P. 549–555. doi:10.1016/j.chemosphere.2019.01.190 54. Moussavi G., Shekoohiyan S., Naddafi K. The accelerated enzymatic biodegradation and COD removal of petroleum hydrocarbons in the SCR using active bacterial biomass capable of in-situ generating peroxidase and biosurfactants. // Chem. Eng. J. 2017. V. 308. P. 1081–1089. doi:10.1016/j.cej.2016.09.136 55. Mui E.L., Cheung W.H., Valix M., McKay G. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. // Journal of Colloid and Interface Science. 2010. V. 347(2). P. 290–300. doi:10.1016/j.jcis.2010.03.061 56. Musengi A., Khan N., Le Roes-Hill M., Pletschke B.I. Increasing the scale of peroxidase production by Streptomyces sp. strain BSII#1. // J. Appl. Microbiol. 2014. V. 116. P. 554–562. doi:10.1111/jam.12380 57. Nayanashree G., Thippeswamy B., Krishnappa M. Enzymatic studies on Natural rubber biodegradation by Bacillus pumilus. // Int J Biological Res. 2014. V. 2. P. 44–47. doi:10.14419/ijbr.v2i2.2878 58. Nayanashree G., Thippeswamy B. Natural rubber degradation by laccase and manganese peroxidase enzymes of Penicillium chrysogenum. // Int. J. Environ. Sci. Technol. 2015. V. 12. P. 2665–2672. doi:10.1007/s13762-014-0636-6 59. Ng T.W., Cai Q., Wong C.K., Chow A.T., Wong, P.K. Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: Azo dye as electron donor for chromate reduction. // Journal of Hazardous Materials. 2010. V. 182(1–3). P. 792–800. doi:10.1016/j.jhazmat.2010.06.106 60. Ong S.T., Keng P.S., Lee W.N., Ha S.T., Hung Y.T. Dye waste treatment. // Water. 2011. V. 3(1). P. 157–176. doi:10.3390/w3010157 61. Pathak V.M. Review on the current status of polymer degradation: a microbial approach. // Bioresources Bioprocessing. 2017. V. 4. P. 15. doi:10.1186/s40643-017-0145-9 62. Pizzul L., Castillo M.D.P., Stenström J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. // Biodegradation. 2009. V. 20. P. 751-759. doi:10.1007/s10532-009-9263-1 63. Pourakbar M., Moussavi G., Yaghmaeian K. Enhanced biodegradation of phenol in a novel cyclic activated sludge integrated with a rotating bed bioreactor in anoxic and peroxidase-mediated conditions. // RSC Adv. 2018. V. 8. P. 6293–6305. doi:10.1039/c7ra12997a 64. Pradeep N.V., Anupama S., Navya K., Shalini H.N., Idris M., Hampannavar U.S. Biological removal of phenol from wastewaters: a mini review. // Applied Water Science. 2015. V. 5. P. 105-112. doi:10.1007/s13201-014-0176-8 65. Rajkumar R., Yaakob Z., Takriff M.S., Kamarudin K.F. Optimization of medium composition for the production of peroxidase by Bacillus sp. // Der Pharma Chemica. 2013. V. 5. P. 167–174. 66. Rangasamy K., Athiappan M., Devarajan N., Samykannu G., Parray J.A., Aruljothi K.N., Shameem N., Alqarawi A.A., Hashem A., Abd Allah E.F. Pesticide degrading natural multidrug resistance bacterial flora. // Microbial Pathogenesis. 2018. V. 114. P. 304-310. doi:10.1016/j.micpath.2017.12.013 67. Restrepo-Florez J.-M., Bassi A., Thompson M.R. Microbial degradation and deterioration of polyethylene – A review. // Int. Biodeterior. Biodegrad. 2014. V. 88. P. 83–90. doi:10.1016/j.ibiod.2013.12.014 68. Rosatto S.S., Kubota L.T., de Oliveira Neto G. Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica–titanium. // Analytica Chimica Acta. 1999. V. 390(1-3). P. 65-72. doi:10.1016/S0003-2670(99)00168-3 69. Ruiz-Duenas F.J., Morales M., García E., Miki Y., Martínez M.J., Martínez A.T. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. // Journal of Experimental Botany. 2009. V. 60(2). P. 441–452. doi:10.1093/jxb/ern261 70. Ruzgas T., Csöregi E., Emnéus J., Gorton L., Marko-Varga G. Peroxidase-modified electrodes: fundamentals and application // Analytica Chimica Acta. 1996. V.330 (2-3). P. 123-138. doi:10.1016/0003-2670(96)00169-9 71. Sellami K., Couvert A., Nasrallah N., Maachi R., Abouseoud M., Amrane A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. // Sci. Total Env. 2022. V. 806(2). 150500. doi:10.1016/j.scitotenv.2021.150500 72. Shekoohiya S., Moussavi G., Naddafi K. The peroxidase-mediated biodegradation of petroleum hydrocarbons in a H2O2-induced SBR using in-situ production of peroxidase: Biodegradation experiments and bacterial identification. // J Hazard Mater. 2016. V. 313 P. 170–178. doi:10.1016/j.jhazmat.2016.03.081 73. Singh S., Kang S.H., Mulchandani A., Chen W. Bioremediation: environmental clean-up through pathway engineering. // Current Opinion in Biotechnology. 2008. V. 19(5). P. 437–444. doi:10.1016/j.copbio.2008.07.012 74. Song J., Xu J., Zhao P., Lu L., Bao, J. A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. // Microchimica Acta. 2011. V. 172(1). P. 117–123. doi:10.1007/s00604-010-0470-6 75. Sowmya H.V., Ramalingappa M.K., Thippeswamy B. Biodegradation of polyethylene by Bacillus cereus. // Adv. Polymer. Sci. Technol. Int. J. 2014c. V. 4. P. 28–32. 76. Sowmya H.V., Ramalingappa M.K., Krishnappa M., Thippeswamy B. Degradation of polyethylene by Trichoderma harzianum-SEM, FTIR, and NMR analyses. // Environ. Monit. Assess. 2014b. V. 186. P. 6577–6586. doi:10.1007/s10661-014-3875-6 77. Sowmya H.V., Ramalingappa M.K., Krishnappa M., Thippeswamy B. Low density polyethylene degrading fungi isolated from local dumpsite of shivamogga district. // Int. J. Biol. Res. 2014a. V. 2. P. 39–43. 78. Sridar R., Ramanane U.U., Rajasimman M. ZnO nanoparticles–Synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater. // Environmental Nanotechnology, Monitoring and Management. 2018. V. 10. P. 388-393. doi:10.1016/j.enmm.2018.09.003 79. Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. // Bioresource Technology. 2002. V. 83(1). P. 1-11. doi:10.1016/S0960-8524(01)00212-7 80. Taboada-Puig R., Lu-Chau T.A., Eibes G., Feijoo G., Moreira M.T., Lema J., Taboada-Puig R., Lú-Chau T.A. Continuous removal of endocrine disruptors by versatile peroxidase using a two-stage system. // Biotechnol. Proc. 2015. V. 31. P. 908–916. doi:10.1002/btpr.2116 81. Tien H.T., Salamon Z., Kutnik J., Krysinski P., Kotowski J., Ledermann D., Janas T. Bilayer Lipid Membranes (BLM): an experimental system for biomolecular electronic device development. // Journal of Molecular Electronics. 1988. V. 4 (4). P. S1–S30. 82. Tuncer M., Kuru, A., Isikli M., Sahin N., Çelenk F. Optimization of extracellular endoxylanase, endoglucanase, and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. // J. Appl. Microbiol. 2004. V. 97. P. 783–791. doi:10.1111/j.1365-2672.2004.02361.x 83. Tuncer M., Kuru A., Sahin N., Isikli M. Production and partial characterisation of extracellular peroxidase produced by Streptomyces sp. F6616 isolated in Turkey. // Ann. Microbiol. 2009. V. 59. P. 323–334. doi:10.1007/BF03178335 84. Twala P.P., Mitema A., Baburam C., Feto N.A. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. // AIMS Microbiology. 2020. V. 6(3). P. 330. doi:10.3934/microbiol.2020020 85. Ufarté L., Laville É., Duquesne S., Potocki-Veronese G. Metagenomics for the discovery of pollutant degrading enzymes. // Biotechnology Advances. 2015. V. 33(8). P. 1845–1854. doi:10.1016/j.biotechadv.2015.10.009 86. Unuofin J.O., Okoh A.I., Nwodo U.U. Maize stover as a feedstock for enhanced laccase production by two gamma proteobacteria: a solution to agroindustrial waste stockpiling. // Ind. Crop. Prod. 2019. V. 129. P. 611–623. doi:10.1016/j.indcrop.2018.12.043 87. Urek R.O., Pazarlioglu N.K. Enhanced production of manganese peroxidase by Phanerochaete chrysosporium. // Braz. Arch. Biol. Technol. 2007. V. 50. P. 913–920. doi:10.1590/S1516-89132007000700001 88. Wang F.Q., Xie H., Chen W., Wang E.T., Du F.G., Song A.D. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. // Bioresour Technol. 2013. V. 144. P. 572–578 doi:10.1016/j.biortech.2013.07.012 89. Weber R., Gaus C., Tysklind M., Johnston P., Forter M., Hollert H., Heinisch E., Holoubek I., Lloyd-Smith M., Masunaga S., Moccarelli P. Dioxin- and POP-contaminated sites-contemporary and future relevance and challenges: overview on background, aims and scope of the series. // Env. Sci. Pollution Research. 2008. V. 15(5). P. 363–393. doi:10.1007/s11356-008-0024-1 90. Wei R., Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? // Microb Biotechnol. 2017. V. 10. P. 1308–1322. doi:10.1111/1751-7915.12710 91. Weng J.K., Li X., Bonawitz N.D., Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. // Current Opinion in Biotechnology. 2008. V. 19(2). P. 166-172. doi:10.1016/j.copbio.2008.02.014 92. Wilkes R.A., Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. // J. Appl. Microbiol. 2017. V. 123. P. 582–593. doi:10.1111/jam.13472