Effects of Azospirillum lectin on wheat seedling growth under salt stress
21.12.2022
Авторы:
Название:
Effects of Azospirillum lectin on wheat seedling growth under salt stress
Страницы:
315-321
Azospirillum brasilense, which has the potential to stimulate plant growth, belongs to plant-growth-promoting bacteria. The positive effect of Azospirillum on plants may be due to different mechanisms. Azospirilla can assist in mitigation of many kinds of abiotic stress. Lectins are glycoproteins with different molecular masses and carbohydrate specificities. Azospirillum lectins are polyfunctional molecules. They promote plant growth and enzyme activity, they also can alter the plant cell content of stress metabolites, which attests that they can induce adaptation processes in wheat seedling roots. We investigated the dose-dependent effects of the lectin from A. brasilense strain Sp7 on the roots of 4-day-old wheat seedlings (Triticum aestivum L. cv. Saratovskaya 29) grown under salt stress. A low lectin concentration (0.3 mM L-1) improved seedling growth and alleviated the stress-induced growth inhibition. However, higher concentrations of lectin (1.2 mM L-1) did not affect the growth of the stressed seedling roots. In the roots of 4-day-old wheat seedlings under salt stress, the Sp7 lectin decreased total protein content and lipid peroxidation, which causes membrane damage, but increased the content of secondary metabolites such as total phenolics and total flavonoids. We conclude that the Azospirillum lectins are involved in adaptational changes in wheat seedling roots, due to which the relationship between bacteria and their hosts can be regulated under changing soil and climatic factors.
- Alen’kina S.A., Bogatyrev V.A., Matora L.Yu., Sokolova M.K., Chernysheva M.P., K.A. Trutneva, Nikitina V.E. Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial–plant root interactions // Plant and Soil. 2014. V. 381. P. 337-349. doi:10.1134/S0026261715050021 2. Alen’kina S.А., Romanov N.I., Nikitina V.Е. Regulation by Azospirillum lectins of the activity of antioxidant enzymes in wheat seedling roots under short-term stresses // Brazilian Journal of Botany. 2018. V. 41. P. 579-587. doi:10.1007/s40415-018-0489-1 3. Alen’kina S.А., Nikitina V.Е. Effect of Azospirillum lectins on the ascorbate peroxidase activity and ascorbic acid content in wheat seedling roots exposed to abiotic stresses // Applied Biochemistry and Microbiology. 2020. V. 56. P. 211-218. doi:10.1071/SR21092 4. Alen’kina S.А., Nikitina V.Е. Stimulating effect from lectins of associative bacteria of the genus Azospirillum on the germination and morphometric characteristics of spring wheat sprouts in simulated abiotic stress // Russian Journal of Plant Physiology. 2021. V. 68. P. 315-321. doi:10.1134/S1021443721010027 5. Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers // Biotechnology Advances. 2009. V. 27. P.84-93. doi:10.1016/j.biotechadv.2008.09.003 6. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Analytical Biochemistry. 1976. V. 72. P. 248-254. doi:10.1016/0003-2697(76)90527-3 7. Darko E., Fodor J., Dulai S., Ambrus H., Szenzenstein A., Kiraly Z., Barnabas B. Improved cold and drought tolerance of doubled haploid maize plants selected for resistance to prooxidant tert-Butyl hydroperoxide // Journal of Agronomy and Crop Science. 2011. V. 197. P. 454-465. doi:10.1111/j.1439-037X.2011.00479.x 8. Díaz-Zorita M., Fernández-Canigia M.V., Bravo O.A., Berger A., Satorre E.H. Field evaluation of extensive crops inoculated with Azospirillum sp. In: Cassan F.D., Okon Y., Creus C.M. (eds) Handbook for Azospirillum technical issues and protocols. Springer International Publishing, Cham, 2015. P. 435-445. doi:10.1007/978-3-319-06542-7_24 9. Dong H.Z., Kong X.Q., Luo Z., Li W.J., Xin C.S. Unequal salt distribution in the root zone increases growth and yield of cotton // European Society for Agronomy. 2010. V. 33. P. 285-292. doi:10.1016/j.eja.2010.08.002 10. Georgiadou E.C., Ntourou T., Goulas V., Manganaris G.A., Kalaitzis P., Fotopoulos V. Temporal analysis reveals a key role for VTE5 in vitamin E biosynthesis in olive fruit during on-tree development // Front. Plant Sci. 2015. V. 6. P. 871. doi:10.3389/fpls.2015.00871 11. Es-Safi N.E., Kollmann I., Khlifi S., Ducrot P.H. Antioxidants effect of compounds isolated from Globularia alypum L. Structure-activity relationship // LWT-Food Science and Technology. 2007. V. 40, P. 1246-1252. doi:10.1016/j.lwt.2006.08.019 12. Makkar H.P.S., Sidhuraju P., Becker K. Plant secondary metabolites. Totowa: Humana Press Inc. 2007. 122 s. doi:10.1007/978-1-59745-425-4_1 13. Marinova D., Ribarova F., Atanassova M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables // Journal of Chemical Technology and Metallurgy. 2005. V. 40. P. 255-260. 14. Meloni D.A., Oliva M.A., Martinez C.A., Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress // Environmental and Experimental Botany. 2003. V. 49. P. 69-76. doi:10.1081/PLN-100104983 15. Puente M.L., Gualpa G.L., Lopez G.A., Molina R.M., Carletti S.M., Cassán F.D. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model // Symbiosis. 2018. V. 6. P. 41-49. doi:10.1007/s13199-017-0536-x 16. Rengasamy K.R.R., Kulkarni M.G., Stirk W.A., Van Staden J. Eckola new plant growth stimulant from the brown seaweed Ecklonia maxima // Journal of Applied Physiology. 2015. V. 27. P. 581-587. doi:10.1007/s10811-014-0337-z 17. Salama Z. A., El Fouly M. Evaluation of the efficiency of some Egyptian wheat Triticum aestivum L. cultivars to Zn deficiency through peroxidase activity and protein profile techniques // Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2008. V. 36. P. 42-46. doi:10.15835/nbha36266 18. Velarde-Buendıa A.M., Shabala S., Cvikrova M., Oxana D., Pottosin I. Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines // Plant Physiology and Biochemistry. 2012. V. 61. P. 18-23. doi:10.1016/j.plaphy.2012.09.002 19. Verma S., Mishra S.N. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system // Journal of Plant Physiology. 2005. V. 162. P. 669-677. doi:10.1016/j.jplph.2004.08.008 20. Wu H.L., Wu X.L., Li Z.H., Duan L.S., Zhang M.C. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleraces L.) seedlings treated with methyl jasmonate and coronatine // Journal of Plant Growth Regulation. 2012. V. 31. P.113-123. doi:10.1007/s00344-011-9224-x