Полиморфизм ДНК собак (Canis familiaris) и его применение. IV. мтДНК
31.12.2021
Авторы:
Название:
Полиморфизм ДНК собак (Canis familiaris) и его применение. IV. мтДНК
Страницы:
347-359
Кратко рассмотрена структурная организация митохондриального генома собак, уделив большее внимание его вариабельным участкам, включая контрольный регион и гипервариабельные области HV1 и HV2, а также блок тандемных декамерных повторов и гомополимерный тракт из цитозинов и тиминов. Отмечено, что обнаруживаемый полиморфизм митогеномов и формируемые клады с гаплотипами за небольшими исключениями практически не связаны с породами собак и их географическим местом проживания. В целом полиморфизм митохондриальной ДНК собак не позволяет однозначно идентифицировать конкретную особь и в криминалистике в большинстве случаев возможно с той или иной вероятностью, зависящей от берущихся в анализ вариабельных областей, лишь исключать из дальнейшего исследования подозреваемых собак, которые могли бы вывести на их хозяев. Причем для этого создаются популяционные базы данных митогеномов собак, по которым можно высчитывать вероятности совпадения гаплотипов. Приведены примеры отдельных случаев расследования преступлений, в которых использовался полиморфизм ДНК собак, в том числе закончившихся вынесением обвинительного приговора. Обращено внимание на необходимость более широкого внедрения в криминалистическую практику исследований ДНК собак, которую эксперты могут получать из оставляемых собаками следов преимущественно в виде слюны или шерсти (отдельных шерстинок).
- Алексинская О.А., Алексинский В.С., Зиновкин Д.А., Шпак А.В., Хейдорова Е.Э., Дебелый М.А. Мозырская «чупакабра» - что говорит наука? // Лабораторная диагностика. Восточная Европа. 2019. т. 8. №4. с. 574 - 586. 2. Гарафутдинов Р.Р., Чемерис Д.А., Сахабутдинова А.Р., Алексеев Я.И., Геращенков Г.А., Гиниятов Ю.Р., Аминев Ф.Г., Чемерис А.В. Полиморфизм ДНК собак (Canis familiaris L.). III. VNTR- и STR-локусы. Их применение в собаководстве и криминалистике // Biomics. 2021. Т.13(3). С.321-346. DOI: 10.31301/2221-6197.bmcs.2021-23 3. Гиниятов Ю.Р., Чемерис Д.А., Яхин О.И., Гарафутдинов Р.Р., Чемерис А.В. Прасобаки, собаки и их будущее // Biomics. 2021. Т.13(3). С. 288-297. DOI: 10.31301/2221-6197.bmcs.2021-20 4. Чемерис Д.А., Гиниятов Ю.Р., Гарафутдинов Р.Р., Чемерис А.В. Полиморфизм ДНК собак (Canis familiaris L.). I. Происхождение, распространение собак в свете молекулярно-биологических данных об их митохондриальных и ядерных геномах // Biomics. 2021. Т.13(3). С. 298-308. DOI: 10.31301/2221-6197.bmcs.2021-21 5. Angleby H., Oskarsson M., Pang J., Zhang Y.P., Leitner T., Braham C., Arvestad L., Lundeberg J., Webb K.M., Savolainen P. Forensic informativity of ~3000 bp of coding sequence of domestic dog mtDNA // J. Forensic Sci. 2014. V. 59(4). P. 898-908. doi:10.1111/1556-4029.12504. 6. Angleby H., Savolainen P. Forensic informativity of domestic dog mtDNA control region sequences // Forensic Sci. Int. 2005. V. 154(2-3). P. 99-110. doi:10.1016/j.forsciint.2004.09.132. 7. Barrientos L.S., Crespi J.A., Fameli A., Posik D.M., Morales H., Peral G.P., Giovambattista G. DNA profile of dog feces as evidence to solve a homicide // Leg. Med. (Tokyo). 2016. V. 22. P. 54-57. doi:10.1016/j.legalmed.2016.08.002. 8. Baute D.T., Satkoski J.A., Spear T.F., Smith D.G., Dayton M.R., Malladi V.S., Goyal V., Kou A., Kinaga J.L., Kanthaswamy S. Analysis of forensic SNPs in the canine mtDNA HV1 mutational hotspot region // J. Forensic Sci. 2008. V. 53(6). P. 1325-1333. doi:10.1111/j.1556-4029.2008.00880.x. 9. Bekaert B., Larmuseau M.H., Vanhove M.P., Opdekamp A., Decorte R. Automated DNA extraction of single dog hairs without roots for mitochondrial DNA analysis // Forensic Sci. Int. Genet. 2012. V. 6(2). P. 277-281. doi:10.1016/j.fsigen.2011.04.009. 10. Berger C., Berger B., Parson W. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations // Methods Mol. Biol. 2012. V. 830. P. 331-348. doi:10.1007/978-1-61779-461-2_23. 11. Berger C., Heinrich J., Berger B., Hecht W., Parson W. On Behalf Of CaDNAP. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs // Genes (Basel). 2021. V. 12(6). P. 908. doi:10.3390/genes12060908. 12. Ciampolini R., Cecchi F., Spinetti I., Rocchi A., Biscarini F. The use of genetic markers to estimate relationships between dogs in the course of criminal investigations // BMC Res. Notes. 2017. V. 10(1). P. 414. doi:10.1186/s13104-017-2722-6. 13. Desmyter S., Gijsbers L. Belgian canine population and purebred study for forensics by improved mitochondrial DNA sequencing // Forensic Sci. Int. Genet. 2012. V. 6(1). P. 113-120. doi:10.1016/j.fsigen.2011.03.011. 14. Duleba A., Skonieczna K., Bogdanowicz W., Malyarchuk B., Grzybowski T. Complete mitochondrial genome database and standardized classification system for Canis lupus familiaris // Forensic Sci. Int. Genet. 2015. V. 19. P. 123-129. doi:10.1016/j.fsigen.2015.06.014. 15. Eichmann C., Berger B., Reinhold M., Lutz M., Parson W. Canine-specific STR typing of saliva traces on dog bite wounds // Int. J. Legal Med. 2004. V. 118(6). P. 337-342. doi:10.1007/s00414-004-0479-7. 16. Eichmann C., Parson W. Molecular characterization of the canine mitochondrial DNA control region for forensic applications // Int. J. Legal Med. 2007. V. 121(5). P. 411-416. doi:10.1007/s00414-006-0143-5. 17. Fregel R., Suárez N.M., Betancor E., González A.M., Cabrera V.M., Pestano J. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature // Mitochondrion. 2015. V.22. P.75-84. doi:10.1016/j.mito.2015.04.001 18. Goleman M., Balicki I., Radko A., Rozempolska-Rucińska I., Zięba G. Pedigree and Molecular Analyses in the Assessment of Genetic Variability of the Polish Greyhound // Animals (Basel). 2021. V. 11(2). P. 353. doi:10.3390/ani11020353. 19. Gundry R.L., Allard M.W., Moretti T.R., Honeycutt R.L., Wilson M.R., Monson K.L., Foran D.R. Mitochondrial DNA analysis of the domestic dog: control region variation within and among breeds // J. Forensic Sci. 2007. V. 52(3). P. 562-572. doi:10.1111/j.1556-4029.2007.00425.x. 20. Halverson J.L., Basten C. Forensic DNA identification of animal-derived trace evidence: tools for linking victims and suspects // Croat. Med. J. 2005. V. 46(4). P. 598-605. 21. Hart M.L., Meyer A., Johnson P.J., Ericsson A.C. Comparative Evaluation of DNA Extraction Methods from Feces of Multiple Host Species for Downstream Next-Generation Sequencing // PLoS One. 2015. V. 10(11). e0143334. doi:10.1371/journal.pone.0143334. 22. Hassell R., Heath P., Musgrave-Brown E., Ballard D., Harrison C., Thacker C., Catchpole B., Syndercombe Court D. Mitochondrial DNA analysis of domestic dogs in the UK // Forensic Science International: Genetics Supplement Series. 2008. V.1(1). P.598-599. doi:10.1016/j.fsigss.2007.10.187 23. Himmelberger A.L., Spear T.F., Satkoski J.A., George D.A., Garnica W.T., Malladi V.S., Smith D.G., Webb K.M., Allard M.W., Kanthaswamy S. Forensic utility of the mitochondrial hypervariable region 1 of domestic dogs, in conjunction with breed and geographic information // J. Forensic Sci. 2008. V. 53(1). P. 81-89. doi:10.1111/j.1556-4029.2007.00615.x. 24. Imes D.L., Wictum E.J., Allard M.W., Sacks B.N. Identification of single nucleotide polymorphisms within the mtDNA genome of the domestic dog to discriminate individuals with common HVI haplotypes // Forensic Sci. Int. Genet. 2012. V. 6(5). P. 630-639. doi:10.1016/j.fsigen.2012.02.004. 25. Ishiguro N., Nakajima A., Horiuchi M., Shinagawa M. Multiple nuclear pseudogenes of mitochondrial DNA exist in the canine genome // Mamm. Genome. 2002. V. 13(7). P. 365-372. doi:10.1007/s00335-001-2139-2. 26. Kim K.S., Lee S.E., Jeong H.W., Ha J.H. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome // Mol. Phylogenet. Evol. 1998. V. 10(2). P. 210-220. doi:10.1006/mpev.1998.0513. 27. Klütsch C.F., Seppälä E.H., Uhlén M., Lohi H., Savolainen P. Segregation of point mutation heteroplasmy in the control region of dog mtDNA studied systematically in deep generation pedigrees // Int. J. Legal Med. 2011. V. 125(4). P. 527-535. doi:10.1007/s00414-010-0524-7. 28. Lindquist C.D., Wictum E.J. Less is More--Optimization of DNA Extraction from Canine Feces // J. Forensic Sci. 2016. V. 61(1). P. 212-218. doi:10.1111/1556-4029.12913. 29. Mitsouras K., Faulhaber E.A. Saliva as an alternative source of high yield canine genomic DNA for genotyping studies // BMC Res. Notes. 2009. V. 2. P. 219. doi:10.1186/1756-0500-2-219 30. Okumura N, Ishiguro N, Nakano M, Matsui A, Sahara M. Intra- and interbreed genetic variations of mitochondrial DNA major non-coding regions in Japanese native dog breeds (Canis familiaris) // Anim Genet. 1996. V.27(6). P.397-405. doi:10.1111/j.1365-2052.1996.tb00506.x 31. Parra D., Méndez S., Cañón J., Dunner S. Genetic differentiation in pointing dog breeds inferred from microsatellites and mitochondrial DNA sequence // Anim. Genet. 2008. V. 39(1). P. 1-7. doi:10.1111/j.1365-2052.2007.01658.x. 32. Pereira L., Van Asch B., Amorim A. Standardisation of nomenclature for dog mtDNA D-loop: a prerequisite for launching a Canis familiaris database // Forensic Sci. Int. 2004. V. 141(2-3). P. 99-108. doi:10.1016/j.forsciint.2003.12.014. 33. Pfeiffer I., Völkel I., Täubert H., Brenig B. Forensic DNA-typing of dog hair: DNA-extraction and PCR amplification // Forensic Sci. Int. 2004. V. 141(2-3). P. 149-151. doi:10.1016/j.forsciint.2004.01.016. 34. Roccaro M., Bini C., Fais P., Merialdi G., Pelotti S., Peli A. Who killed my dog? Use of forensic genetics to investigate an enigmatic case // Int. J. Legal Med. 2021. V. 135(2). P. 387-392. doi:10.1007/s00414-020-02388-9. 35. Rothuizen J., de Gouw H., Hellebrekers L.J., Lenstra H.A. Variable structures of mitochondrial DNA in dogs // Vet. Q. 1995. V. 17. Suppl. 1:S22-3. 36. Savolainen P., Arvestad L., Lundeberg J. A novel method for forensic DNA investigations: repeat-type sequence analysis of tandemly repeated mtDNA in domestic dogs // J. Forensic Sci. 2000. V. 45(5). P. 990-999. 37. Savolainen P., Arvestad L., Lundeberg J. mtDNA tandem repeats in domestic dogs and wolves: mutation mechanism studied by analysis of the sequence of imperfect repeats // Mol. Biol. Evol. 2000. V. 17(4). P. 474-488. doi:10.1093/oxfordjournals.molbev.a026328. 38. Savolainen P., Lundeberg J. Forensic evidence based on mtDNA from dog and wolf hairs // J. Forensic Sci. 1999. V.44(1). P.77-81. DOI:10.1016/S1353-1131(99)90078-0 39. Savolainen P., Rosén B., Holmberg A., Leitner T., Uhlén M., Lundeberg J. Sequence analysis of domestic dog mitochondrial DNA for forensic use // J. Forensic Sci. 1997. V. 42(4). P. 593-600. 40. Savolainen P., Zhang Y.P., Luo J., Lundeberg J., Leitner T. Genetic evidence for an East Asian origin of domestic dogs // Science. 2002. V. 298(5598). P. 1610-1613. doi:10.1126/science.1073906. 41. Schneider P.M., Seo Y., Rittner C. Forensic mtDNA hair analysis excludes a dog from having caused a traffic accident // Int. J. Legal Med. 1999. V. 112(5). P. 315-316. doi:10.1007/s004140050257. 42. Smalling B.B., Satkoski J.A., Tom B.K., Szeto W.Y., Erickson B.J-A., Spear T.F., Smith D.G., Budowle B., Webb K.M., Allard M., Kanthaswamy S. Geographic Differences in Mitochondrial DNA (mtDNA) Distribution Among United States (US) Domestic Dog Populations // The Open Forensic Science Journal. 2010. V.3. P.22-32. 43. Somnay V., Duong T., Tsao R.Y., Prahlow J.A. Crime Scene Analysis Through DNA Testing of Canine Feces-A Case Report // Acad. Forensic Pathol. 2020. V. 10(1). P. 56-61. doi:10.1177/1925362120944743. 44. Spadaro A, Ream K, Braham C, Webb KM. Local mitochondrial DNA haplotype databases needed for domestic dog populations that have experienced founder effect // Forensic Sci. Int. 2015. V.248. P.113-118. doi:10.1016/j.forsciint.2014.12.025 45. Spicer A.M., Kun T.J., Sacks B.N., Wictum E.J. Mitochondrial DNA sequence heteroplasmy levels in domestic dog hair // Forensic Sci. Int. Genet. 2014. V. 11. P. 7-12. doi:10.1016/j.fsigen.2014.02.006. 46. Sugiyama S., Chong Y.H., Shito M., Kasuga M., Kawakami T., Udagawa C., Aoki H., Bonkobara M., Tsuchida S., Sakamoto A., Okuda H., Nagai A., Omi T. Analysis of mitochondrial DNA HVR1 haplotype of pure-bred domestic dogs in Japan // Leg. Med. (Tokyo). 2013. V. 15(6). P. 303-309. doi:10.1016/j.legalmed.2013.08.005. 47. van Asch B., Albarran C., Alonso A., Angulo R., Alves C., Betancor E., Catanesi C.I., Corach D., Crespillo M., Doutremepuich C., Estonba A., Fernandes A.T., Fernandez E., Garcia A.M., Garcia M.A., Gilardi P., Gonçalves R., Hernández A., Lima G., Nascimento E., de Pancorbo M.M., Parra D., Pinheiro M.F., Prat E., Puente J., Ramírez J.L., Rendo F., Rey I., Di Rocco F., Rodríguez A., Sala A., Salla J., Sanchez J.J., Solá D., Silva S., Pestano Brito J.J., Amorim A. Forensic analysis of dog (Canis lupus familiaris) mitochondrial DNA sequences: an inter-laboratory study of the GEP-ISFG working group // Forensic Sci. Int. Genet. 2009. V. 4(1). P. 49-54. doi:10.1016/j.fsigen.2009.04.008. 48. Verscheure S., Backeljau T., Desmyter S. Coding region SNP analysis to enhance dog mtDNA discrimination power in forensic casework // Forensic Sci. Int. Genet. 2015. V.14. P.86-95. doi:10.1016/j.fsigen.2014.09.006. 49. Verscheure S., Backeljau T., Desmyter S. In silico discovery of a nearly complete mitochondrial genome Numt in the dog (Canis lupus familiaris) nuclear genome // Genetica. 2015. V. 143(4). P. 453-458. doi:10.1007/s10709-015-9844-3. 50. Verscheure S, Backeljau T, Desmyter S. Reviewing population studies for forensic purposes: Dog mitochondrial DNA // Zookeys. 2013. V.365. 381-411. doi:10.3897/zookeys.365.5859 51. Verscheure S., Backeljau T., Desmyter S. Length heteroplasmy of the polyC-polyT-polyC stretch in the dog mtDNA control region // Int. J. Legal. Med. 2015. V. 129(5). P. 927-935. doi:10.1007/s00414-014-1106-x. 52. Vilà C., Savolainen P., Maldonado J.E., Amorim I.R., Rice J.E., Honeycutt R.L., Crandall K.A., Lundeberg J., Wayne R.K. Multiple and ancient origins of the domestic dog // Science. 1997. V. 276(5319). P. 1687-1689. doi:10.1126/science.276.5319.1687. 53. Webb K.M., Allard M.W. Identification of forensically informative SNPs in the domestic dog mitochondrial control region // J. Forensic Sci. 2009. V. 54(2). P. 289-304. doi:10.1111/j.1556-4029.2008.00953.x. 54. Webb K.M., Allard M.W. Mitochondrial genome DNA analysis of the domestic dog: identifying informative SNPs outside of the control region // J. Forensic Sci. 2009. V. 54(2). P. 275-288. doi:10.1111/j.1556-4029.2008.00952.x. 55. Wetton J.H., Higgs J.E., Spriggs A.C., Roney C.A., Tsang C.S., Foster A.P. Mitochondrial profiling of dog hairs // Forensic Sci. Int. 2003. V. 133(3). P. 235-241. doi:10.1016/s0379-0738(03)00076-8.