Исследование способности штамма Pseudomonas sp. OBA 2.4.1 использовать глифосат в качестве источника углерода
26.12.2024
Авторы:
Название:
Исследование способности штамма Pseudomonas sp. OBA 2.4.1 использовать глифосат в качестве источника углерода
Страницы:
335-341
Глифосат является неселективным системным гербицидом с широким спектром действия для борьбы с сорняками, который ингибирует ключевой фермент, 5-енолпирувилшикимат-3-фосфат-синтазу (EPSP), в шикиматном пути. Наиболее перспективной и экологичной стратегией удаления таких гербицидов из окружающей среды является микробная деградация. Показано, что некоторые бактерии могут превращать пестициды в биохимические строительные блоки, необходимые для цикла Кребса и гликолиза. К таким бактериям относятся Pseudomonas spр.; они хорошо адаптированы к стрессовым условиям среды. Псевдомонады могут быть использованы как биоинокулянты почв, загрязненных тяжелыми металлами, гербицидами и другими ксенобиотиками, что представляет собой биологическую альтернативу для повышения эффективности биоремедиации. Целью данной работы было исследование способности ростостимулирующего штамма Pseudomonas sp. OBA 2.4.1 использовать глифосат в качестве единственного источника углерода для своего роста. В нашем исследовании показано, что максимальная ингибирующая концентрация глифосата для исследуемого штамма равна 10.0 мг/мл в твердой питательной среде. Анализ роста Pseudomonas sp. OBA 2.4.1 с использованием жидкой минеральной среды Дворкина-Фостера с разными источниками углерода показал хороший рост только в стандартной среде с глюкозой в качестве источника углерода. Активность роста штамма при наличии в питательной среде глифосата в сочетании с глюкозой уменьшалась практически в 2 раза. Полная замена глюкозы на глифосат приводило к еще более существенному снижению оптической плотности бактериальной суспензии. Таким образом, показано, что Pseudomonas sp. OBA 2.4.1 практически не способен использовать глифосат как единственный источник углерода для своего метаболизма.
- Михайловская Н.А., Барашенко Т.Б., Погирницкая Т.В., Дюсова С.В. Скрининг зональных изолятов Pseudomonas sp. по устойчивости к глифосату и его утилизации как источника углерода и фосфора // Почвоведение и агрохимия. 2022. №2. С. 35-48. 2. Хакимова Л.Р., Чубукова О.В., Мурясова А.Р., Вершинина З.Р. Влияние штамма Pseudomonas sp. OBA 2.4.1 на растения гороха посевного (Pisum sativum L.) при ингибирующем действии солей кадмия // Биомика. 2022. V. 14(2). С. 101-110. doi:10.31301/2221-6197.bmcs.2022-7. 3. Чубукова О.В., Хакимова Л.Р., Акимова Е.С., Вершинина З.Р. Филогения и свойства новых штаммов Pseudomonas sp. из ризосферы бобовых растений Южного Урала // Микробиология. 2022. T. 91(5). С. 537-546 doi:10.31857/S0026365622100196 4. Aitbali Y., Ba-M’hamed S., Elhidar N., Nafis A., Soraa N., Bennis M. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice // Neurotoxicol. Teratol. 2018. V. 67. P. 44-49. doi:10.1016/j.ntt.2018.04.002 5. Blot N., Veillat L., Rouz, R., Delatte H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota // PLoS One. 2019. V. 14(4). e0215466. doi:10.1371/journal.pone.0215466 6. Bocker T., Mohring N., Finger R. Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production // Agric Syst. 2019. V. 173. Р. 378-392. doi:10.1016/j.agsy.2019.03.001 7. Braga R.R., Santos J.B., Zanuncio J.C., Bibiano C.S., Ferreira E.A., Oliveira M.C., Silva D.V., Serrão J.E. Effect of growing Brachiria brizanta on phytoremediation of picloram under different pH environments // Ecol. Eng. 2016. V. 94. P. 102-106. doi:10.1016/j.ecoleng.2016.05.050 8. Ghaderitabar H., Mousavi A., Hatef Salmanian A., Hadi F. Novel aroA of Glyphosate-Tolerant Bacterium Pseudomonas sp. Strain HA-09 Isolated from Roundup-Contaminated Garden Soils in Iran // Iran J Biotechnol. 2020. V. 18(3). e2597. doi:10.30498/IJB.2020.204133.2597 9. Khakimova L., Chubukova O., Vershinina Z., Maslennikova D. Effects of Pseudomonas sp. OBA 2.4. 1 on Growth and Tolerance to Cadmium Stress in Pisum sativum L. // BioTech. 2023. V. 12(1). 5. doi:10.3390/biotech12010005 10. Khakimova L.R., Chubukova O.V., Vershinina Z.R. Use of the Pseudomonas sp. OBA 2.4.1 Strain for presowing treatment of pea seeds (Pisum Sativum L.) in the presence of heavy metals and glyphosate // Applied Biochemistry and Microbiology. 2024. V. 60(4). P. 722-729. doi:10.1134/S0003683824604414 11. Kittle R.P., McDermid K.J., Muehlstein L., Balazs G.H. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus // Mar. Pollut. Bull. 2018. V. 127. P. 170-174. doi:10.1016/j.marpolbul.2017.11.030 12. Kubsad D., Nilsson E.E., King S.E., Sadler-Riggleman I., Beck D., Skinner M.K. Assessment of glyphosate induced epigenetic transgenerational inheritance of pathologies and sperm epimutations: generational toxicology // Sci. Rep. 2019. V. 9(1). P. 6372. doi:10.1038/s41598-019-42860-0 13. Li J., Chen W. J., Zhang W., Zhang Y., Lei Q., Wu S., Huang Y., Mishra S., Bhatt P., Chen S. Effects of free or immobilized bacterium Stenotrophomonas acidaminiphila Y4B on glyphosate degradation performance and indigenous microbial community structure // J. Agric. Food Chem. 2022. V. 70(43). Р. 13945-13958. doi:10.1021/acs.jafc.2c05612 14. Lorch M., Agaras B., García-Parisi P., Druille M., Omacini M., Valverde C. Repeated annual application of glyphosate reduces the abundance and alters the community structure of soil culturable pseudomonads in a temperate grassland // Agriculture, Ecosystems & Environment. 2021. V. 319. Р. 107503. doi:10.1016/j.agee.2021.107503 15. Maggi F., la Cecilia D., Tang F.H.M., McBratney A. The global environmental hazard of glyphosate use // Sci. Total Environ. 2020. V. 717. P. 137167. doi:10.1016/j.scitotenv.2020.137167 16. Masotti F., Garavaglia B.S., Piazza A., Burdisso P., Altabe S., Gottig N., Ottado J. Bacterial isolates from Argentine Pampas and their ability to degrade glyphosate // Sci Total Environ. 2021. V. 774. P. 145761. doi:10.1016/j.scitotenv.2021.145761 17. Rabelo J.S., Dos Santos E.A., de Melo E.I., Vaz M. G.M. V., de Oliveira Mendes G. Tolerance of microorganisms to residual herbicides found in eucalyptus plantations // Chemosphere. 2023. V. 329. 138630. doi:10.1016/j.chemosphere.2023.138630 18. Sun Y.C., Chen Y.C., Tian Z.X., Li F.M., Wang X.Y., Zhang J., Xiao Z.L., Lin M., Gilmartin N., Dowling D.N., Wang Y.P. Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China // Appl Environ Microbiol. 2005. V. 71(8). Р. 4771-4776. doi:10.1128/AEM.71.8.4771-4776.2005 19. Tang F.H.M., Lenzen M., McBratney A., Maggi F. Risk of pesticide pollution at the global scale // Nat. Geosci. 2021. V. 14. Р. 206-210. doi:10.1038/s41561-021-00712-5 20. Thiour-Mauprivez C., Martin-Laurent F., Calvayrac C., Barthelmebs L. Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? // Sci. Total Environ. 2019. V. 684. Р. 314-325. doi:10.1016/j.scitotenv.2019.05.230 21. Wang L., Deng Q., Hu H., Liu M., Gong Z., Zhang S., Xu-Monette Z.Y., Lu Z., Young K.H., Ma X., Li Y. Glyphosate induces benign monoclonal gammopathy and promotes multiple myeloma progression in mice // J. Hematol. Oncol. 2019. V. 12(70). Р. 1-11. doi:10.1186/s13045-019-0767-9 22. Yu J., Jin B., Ji Q., Wang H. Detoxification and metabolism of glyphosate by a Pseudomonas sp. via biogenic manganese oxidation // J Hazard Mater. 2023. V. 448. Р. 130902. doi:10.1016/j.jhazmat.2023.130902 23. Zhang F., Qiao Z., Yao C., Sun S., Liu W., Wang J. Effects of the novel HPPD-inhibitor herbicide QYM201 on enzyme activity and microorganisms, and its degradation in soil // Ecotoxicology. 2021. V. 30. Р. 80–90. doi:10.1007/s10646-020-02302-4 24. Zoller O., Rhyn P., Rupp H., Zarn J. A., Geiser C. Glyphosate residues in Swiss market foods: monitoring and risk evaluation // Food Addit. Contam. Part B. 2018.