Aegilops aucheri Boiss. — almost forgotten as a separate species — may also be regarded as rather close to a probable ancient donor of subgenome G for polyploid wheats of the timopheevii-zhukovskyi lineage
26.12.2024
Авторы:
Название:
Aegilops aucheri Boiss. — almost forgotten as a separate species — may also be regarded as rather close to a probable ancient donor of subgenome G for polyploid wheats of the timopheevii-zhukovskyi lineage
Страницы:
359-368
From the time of Theophrastus, for 2 millennia, many plants have been considered an herb liked by goats and called Aegilops. This had continued until the introduction of binary nomenclature by C.Linnaeus when he described the genus Aegilops L. This article contains excerpts from modern and historical classifications of the genus Aegilops as compiled by various authors through the years, but the emphasis is on Aegilops species from the section Sitopsis. Nowadays, there is some mixing between the Aegilops classifications proposed in the late 1920s. One of them was developed by P.M.Zhukovsky and had a section called Sitopsis, and another classification was developed by A.Eig, where this section was called Platystachyum but was divided into two subsections (Emarginata and Truncata), both of which are now within the generally accepted section Sitopsis. Numerous renamings of Aegilops species from the section Sitopsis during more than 2 centuries were noted. The interest in the section Sitopsis of the genus Aegilops is due to the fact that its species are potential donors of subgenomes of polyploid wheats. Polyploid wheats constitute two lineages with the genomic formulae BA, BAD, GA, GAA. The greatest doubts are raised by the first maternal subgenomes of these lines (B and G), the donor of which was some species of the section Sitopsis during the initial crossing with diploid wheat. A comparison of nucleotide sequences of complete chloroplast genomes of species from the Triticum–Aegilops alliance clearly indicates that species from the subsection Emarginata could not be this donor. The most likely donor of subgenomes B and G was either Ae. speltoides or a closely related species (from the subsection Truncata) that has not yet been found or is already extinct. Formerly, this section has included such species as Ae. aucheri, which is currently considered to be Ae. speltoides or its subspecies — merely its synonym — but which had probably been unreasonably rejected as an independent species by a substantial number of taxonomists in the second half of the 20th century. Sequencing of the complete plastid genome of this species from seven specimens of different geographical origin shows that it diverges from Ae. speltoides. The phylogenetic tree constructed on the basis of a comparison of genomes of diploid wheats, Aegilops from the subsection Emarginata, Ae. tauschii, Ae. aucheri, Ae. speltoides, and polyploid wheats of two lineages (turgidum-aestivum and timopheevii-zhukovskyi) indicates that Ae. aucheri can also be considered a potential donor of subgenome G for timopheevii-zhukovskyi wheats, whereas turgidum-aestivum wheats are distant from the other species.
- Anamthawat-Jónsson K., Heslop-Harrison J.S. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet. 1993. V.240(2). P.151-158. doi:10.1007/BF00277052 2. Bahrman N., Zivy M., Thiellement H. Genetic relationships in the Sitopsis section of Triticum and the origin of the B genome of polyploid wheats. Heredity. 1988. V.61. P.473-480. doi:10.1038/hdy.1988.141 3. Belousova M.H., Chikida N.N. Feature of Aegilops Sitopsis section as for its morphological signs. Daghestan GAU Proceedings. 2019. No. 3. P.18-23. (In Russian) 4. Belyayev A, Raskina O, Nevo E. Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization. Heredity (Edinb). 2001. V.86(6). P.738-742. doi:10.1038/sj.hdy.6888910 5. Bernhardt N., Brassac J., Kilian B., Blattner F. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol. Biology. 2017. V. 17. 141. doi:10.1186/s12862-017-0989-9 6. Boguslavsky R.L., Golik O.V. Aegilops L. as a Genetic Breeding Resource. 2004. 236 P. (In Russian) 7. Bowden W.M. The taxonomy and nomenclature of the wheats, barleys, and rye and their wild relatives. Can. J. Bot. 1959. V. 37. P.657-684. doi:10.1139/b59-053 8. Chen N., Chen W.J., Yan H. et al. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Mol Phylogenet Evol. 2020. V.149. 106838. doi:10.1016/j.ympev.2020.106838 9. Chen N., Sha L.N., Wang Y.L. et al. Variation in plastome sizes accompanied by evolutionary history in monogenomic Triticeae (Poaceae: Triticeae). Front Plant Sci. 2021. V.12. 741063. doi:10.3389/fpls.2021.741063 10. Demir P., Onde S., Severcan F. Phylogeny of cultivated and wild wheat species using ATR-FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2015. V.135. P.757-763. doi:10.1016/j.saa.2014.07.025 11. Dizkirici A., Kansu C., Onde S., Birsin M., Özgen M., Kaya Z. Phylogenetic relationships among Triticum L. and Aegilops L. species as genome progenitors of bread wheat based on sequence diversity in trnT-f region of chloroplast DNA. Genet. Resour. Crop Evol. 2013. V.60. P.2227-2240. doi:10.1007/s10722-013-9988-x 12. Eig A. Monographisch-Kritische uebersicht der gattung Aegilops. Repertorium. Specierum Novarum Regni Vegetabilis. 1929. V.55. P.1-228. 13. Feldman M., Levy A.A. Aegilops L. In: Wheat Evolution and Domestication. 2023. P. 213-364. doi:10.1007/978-3-031-30175-9_9 14. Fu Y.B. Characterizing chloroplast genomes and inferring maternal divergence of the Triticum-Aegilops complex. Sci Rep. 2021. V.11. 15363. doi:10.1038/s41598-021-94649-9 15. Furuta Y., Nishikawa K., Kimizuka T. Quantitative comparison of the nuclear DNA in section Sitopsis of the genus Aegilops. Jap. J. Genet. 1977. V.52. P.107-115. doi:10.1266/jjg.52.107 16. Gandilyan P.A. On the taxonomy of the genus Aegilops L. and the determinant of its types. Biological Journal of Armenia. 1978. V.31(3). P. 223-232. (In Russian) 17. Gogniashvili M., Naskidashvili, P., Bedoshvili, D., Kotorashvil A., Kotaria N., Beridze T. Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.) Genet. Resour. Crop Evol. 2015. V. 62. P.1269-1277. doi:10.1007/s10722-015-0230-x 18. Golovnina K.A., Glushkov S.A., Blinov A.G., Mayorov V.I., Adkison L.R., Goncharov N.P. Molecular phylogeny of the genus Triticum L. Plant Syst. Evol. 2007. V.264. P.195-216. doi:10.1007/s00606-006-0478-x 19. Goncharov N.P., Konovalov A.A. Inheritance of glucose phosphate isomerase, awnedness, hairy G and growth habit in Aegilops speltoides and Aegilops aucheri. Russian J. Genet. 1996. V.32(5). P.656-662. 20. Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS, Li W. The chloroplast view of the evolution of polyploid wheat. New Phytol. 2014. V.204(3). P.704-714. doi:10.1111/nph.12931 21. Goryunova S.V., Chikida N.N., Kochieva E.Z. Molecular analysis of the phylogenetic relationships among the diploid Aegilops species of the section Sitopsis. Russian J. Genet. 2008. V.44(1). P.137-141. 22. Haider N. The origin of the B-genome of bread wheat (Triticum aestivum L.) Russian J. Genetics. 2013. V.49(3). P. 263-274. 23. Jenkins J.A., Chromosome homologies in wheat and Aegilops. Am. J. Bot. 1929. V. 16. P. 238–245. doi:10.2307/2435839 24. Kihara H. Substitution of nucleus and its effects on genome manifestations. Cytologia. 1951. V.16. P.177-193. 25. Kihara H. Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia. 1954. V.19. P.336-357. 26. Kihara H. Factors affecting the evolution of common wheat. Ind. J. Genet. Plant Breed. 1966. V. 26A. P. 14-28. 27. Kihara H. Addendum to the classification of the genus Aegilops by means of genome-analysis. Wheat Inf. Service. 1970. No. 30. P.1-2. 28. Kihara H., Lilienfeld F. Genomanalyse bei Triticum und Aegilops. IV. Untersuchungen an Aegilops × Triticum und Aegilops × Aegilops Bastarden. Cytologia. 1932. V.3. P.384-456. 29. Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., Hammer K., Özkan H. Aegilops. In: Wild Crop Relatives: Genomic and Breeding Resources, Cereals. Kole C. (ed.). 2011. P. 1-76. doi:10.1007/978-3-642-14228-4_1 30. Kuluev A.R., Kuluev B.R., Chemeris A.V. The problem of the origin of subgenomes B, A, D of Triticum aestivum L.: Old facts and new evidence. Uspehi sovremennoj biologii. 2023. V.143(1). P.77-90. doi:10.31857/S0042132423010040 31. Kuluev A., Kuluev B., Mikhaylova E., Chemeris A. Sequencing and analysis of complete chloroplast genomes of einkorn wheats Triticum sinskajae and Triticum monococcum accession k-20970. Genet Resour Crop Evol. 2024. V. 71. P. 3347–3360. doi:10.1007/s10722-023-01843-x 32. Kuluev A.R., Matniyazov R.T., Kuluev B.R., Privalov L.Yu, Chemeris A.V. Sequencing and annotation of the chloroplast genome of Triticum timonovum Heslot et Ferrary. Russian Journal of Genetics. 2024a. V.60(7). P. 992–995. doi:10.1134/S1022795424700455 33. Kuluev A.R., Matniyazov R.T., Kuluev B.R., Privalov L.Yu., Chemeris A.V. Sequencing and annotation of the chloroplast genome of Triticum militinae — a "natural mutant" of tetraploid wheat Triticum timopheevii Zhuk. Russian Journal of Genetics. 2024b. V. 60(8). P.1130–1133. doi:10.1134/S1022795424700601 34. Kuluev B.R., Baymiev An.Kh., Gerashchenkov G.A., Yunusbaev U.B., Garafutdinov R.R., Alekseev Ya.I., Baymiev Al.Kh., Chemeris A.V. One hundred years of haploid genomes. Now time comes for diploid genomes. Biomics. 2020. V. 12(4). P. 411-434. doi:10.31301/2221-6197.bmcs.2020-33 (In Russian) 35. Lubna, Asaf S., Jan R., Khan A.L. et al. The plastome sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) exhibit evolutionary changes, structural characterization, comparative analysis, phylogenomics and time divergence. Int. J. Mol. Sci. 2022. V. 23(5). 2783. doi:10.3390/ijms23052783 36. Luo M.C., Deal K.R., Yang Z.L., Dvorak J. Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes. Theor Appl Genet. 2005. V.111(6). P.1098-1106. doi:10.1007/s00122-005-0035-y 37. Middleton C.P., Senerchia N., Stein N., Akhunov E.D., Keller B., Wicker T., Kilian B. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One. 2014. V.9(3). e85761. doi:10.1371/journal.pone.0085761 38. Najafi S., Ulker M., Oral E., Tuncturk R., Tuncturk M., Sayyed R.Z., Perveen K., Poczai P., Cseh A. Estimation of nuclear DNA content in some Aegilops species: Best analyzed using flow cytometry. Genes (Basel). 2022. V.13(11). 1980. doi:10.3390/genes13111980 39. Ogihara Y., Isono, K., Kojima, T. et al. Chinese Spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol. Biol. Rep. 2000. V.18. P.243-253. doi:10.1007/BF02823995 40. Ogihara Y., Isono K., Kojima T. et al. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics. 2002. V.266(5). P.740-746. doi:10.1007/s00438-001-0606-9 41. Ogihara Y., Tsunewaki K. Molecular basis of the genetic diversity of the cytoplasm in Triticum and Aegilops. I. Diversity of the chloroplast genome and its lineage revealed by the restriction pattern of ct-DNAs. Jap. J. Genet. 1982. V.57. P.371-396. 42. Ogihara Y., Tsunewaki K. Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet. 1988. V.76(3). P.321-332. doi:10.1007/BF00265331 43. Orton L.M., Barberá P., Nissenbaum M.P., Peterson P.M., Quintanar A., Soreng R.J., Duvall M.R. A 313 plastome phylogenomic analysis of Pooideae: Exploring relationships among the largest subfamily of grasses. Mol Phylogenet Evol. 2021. V.159. 107110. doi:10.1016/j.ympev.2021.107110 44. Pathak G.N. Studies in the cytology of cereals. J. Genet. 1940. V.39. P.437-467. 45. Sasanuma T., Miyashita N.T., Tsunewaki K. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet. 1996. V.92(8). P.928-934. doi:10.1007/BF00224032 46. Scheider A., Molnar I., Molnar-Lang M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008. V.163. P.1-19. doi:10.1007/s10681-007-9624-y 47. Sorokina O.N. On the chromosomes of Aegilops species. Bull. Appl. Bot. Genet. Plant Breed. 1928. V.19(2). P.523-532. (In Russian) 48. Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021. V.38(7). P.3022-3027. doi:10.1093/molbev/msab120 49. Tsunewaki K. Plasmon analysis in the Triticum-Aegilops complex. Breeding Science. 2009. V.59. P. 455–470. 50. Tsunewaki K., Ogihara Y. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. II. on the origin of polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics. 1983. V.104(1). P.155-171. doi:10.1093/genetics/104.1.155 51. Vakhitov V.A., Chemeris A.V., Sabirzhanov B.E., Akhunov E.D., Kulikov A.M., Nikonorov Iu.M., Gimalov F.R., Bikbulatova S.M., Baĭmiev Al.Kh. The phylogeny of Triticum L. and Aegilops L. inferred from comparative analysis of nucleotide sequences in rDNA promoter regions. Russian J. Genetics. 2003. V.39(1). P.5-17. doi:10.1023/A:1022095224123 52. van Slageren M.W. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). ICARDA / Wageningen, Agricultural University Paper 94(7). 512 P. 53. Wang G.Z., Miyashita N.T., Tsunewaki K. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-Single-Strand Conformational Polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA. 1997. V.94(26). P.14570-14577. doi:10.1073/pnas.94.26.14570 54. Yen C., Yang J. Biosystematics of Triticeae: Volume I. Triticum-Aegilops complex. 2020. 284 P. doi:10.1007/978-981-13-9931-2 55. Zhukovsky P.M. A critical-systematical survey on the species of genus Aegilops L. Bull. Appl. Bot. Genet. Plant Breed. 1928. V.18. P.417-609. (In Russian) 56. Zohary D., Imber D. Genetic dimorphism in fruit types in Ægilops speltoides. Heredity. 1963. V.18. P.223-231. doi:10.1038/hdy.1963.24