Экзополисахариды Rhizobium leguminosarum — краткий обзор
29.03.2020
Авторы:
Название:
Экзополисахариды Rhizobium leguminosarum — краткий обзор
Страницы:
27-49
Биопленки служат для многих бактерий физическим барьером от токсичных соединений и защитой от неблагоприятных условий окружающей среды. Кроме того, для клубеньковых бактерий (ризобий) биопленкообразование является фактором, определяющим конкурентоспособность штаммов ризобий в почвенных условиях. В этом процессе немаловажную роль играют экзополисахариды (ЭПС), биосинтез и функции которых для Rhizobium leguminosarum на сегодняшний день изучены недостаточно, в отличие, например, от Sinorhizobium meliloti. В данной статье рассмотрена основная информация о структуре и биосинтезе ЭПС у R. leguminosarum, описываются основные функции ЭПС, а также эксперименты с генами, связанными с синтезом ЭПС, с целью модификации биопленкообразования, в том числе для целей биотехнологии.
- 1. Amaya-Gomez C.V., Hirsch A.M., Soto M.J. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC microbiology. 2015. V. 15(1). P. 58. doi:10.1186/s12866-015-0390-z 2. Ausmees N., Jacobsson K., Lindberg M. A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology. 2001. V. 147(3). P. 549-559. doi:10.1099/00221287-147-3-549 3. Battisti L., Lara J.C., Leigh J.A. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proceedings of the National Academy of Sciences. 1992. V. 89(12). P. 5625-5629. doi:10.1073/pnas.89.12.5625 4. Becker B.U., Kosch K., Parniske M., Müller P. Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum: sequence, operon structure and mutational analysis of an exo gene cluster. Molecular and General Genetics MGG. 1998. V. 259 (2). P. 161-171. doi:10.1007/s004380050801 5. Bittinger M.A., Handelsman J. Identification of genes in the RosR regulon of Rhizobium etli. Journal of bacteriology. 2000. V. 182(6). P. 1706-1713. doi: 10.1128/jb.182.6.1706-1713.2000 6. Bittinger M.A., Milner J.L., Saville B.J., Handelsman J. rosR, a determinant of nodulation competitiveness in Rhizobium etli. Molecular plant-microbe interactions. 1997. V. 10(2). P. 180-186. doi:10.1094/MPMI.1997.10.2.180 7. Bogino P., Oliva M., Sorroche F., Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. International journal of molecular sciences. 2013. V. 14(8). P. 15838-15859. doi:10.3390/ijms140815838 8. Bomfeti C.A., Florentino L.A., Guimarães A.P., Cardoso P.G., Guerreiro M.C., Moreira F.M.D.S. Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. Revista Brasileira de Ciencia do Solo. 2011. V. 35 (3). P. 657-671. doi:10.1590/S0100-06832011000300001 9. Bonomi H.R., Posadas D.M., Paris G., del Carmen Carrica M., Frederickson M., Pietrasanta L.I., Bogomolni R.A., Zorreguieta A., Goldbaum F. A. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proceedings of the National Academy of Sciences. 2012. V. 109(30). P. 12135-12140. doi:10.1073/pnas.1121292109 10. Borthakur D., Johnston A.W.B. Sequence of psi, a gene on the symbiotic plasmid of Rhizobium phaseoli which inhibits exopolysaccharide synthesis and nodulation and demonstration that its transcription is inhibited by psr, another gene on the symbiotic plasmid. Molecular and General Genetics MGG. 1987. V. 207(1) P. 149-154. doi:10.1007/bf00331502 11. Borthakur D., Barker R.F., Latchford J.W., Rossen L., Johnston A.W.B. Analysis of pss genes of Rhizobium leguminosarum required for exopolysaccharide synthesis and nodulation of peas: their primary structure and their interaction with psi and other nodulation genes. Molecular and General Genetics MGG. 1988. V. 213(1). P. 155-162. doi:10.1007/bf00333413 12. Breedveld M.W., Cremers H.C., Batley M., Posthumus M.A., Zevenhuizen L.P., Wijffelman C.A., Zehnder A.J. Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. Journal of bacteriology. 1993. V. 175(3). P. 750-757. doi:10.1128/jb.175.3.750-757.1993 13. Brewin N.J. Plant cell wall remodelling in the Rhizobium–legume symbiosis. Critical Reviews in Plant Sciences. 2004. V. 23(4). P. 293-316. doi:10.1080/07352680490480734 14. Chen H., Gao K., Kondorosi E., Kondorosi A., Rolfe B. G. Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Molecular plant-microbe interactions. 2005. V. 18(12). P. 1340-1352. doi:10.1094/MPMI-18-1340 15. Cheng H.P., Walker G.C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. Journal of bacteriology. 1998. V. 180(19). P. 5183-5191. doi:10.1128/JB.180.19.5183-5191.1998 16. Chou A.Y., Archdeacon J., Kado C.I. Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. Proceedings of the National Academy of Sciences. 1998. V. 95(9). P. 5293-5298. doi:10.1073/pnas.95.9.5293 17. Ciesla J., Kopycinska M., Lukowska M., Bieganowski A., Janczarek M. Surface properties of wild-type Rhizobium leguminosarum bv. trifolii strain 24.2 and its derivatives with different extracellular polysaccharide content. PloS one. 2016. V. 11(10). e0165080. doi:10.1371/journal.pone.0165080 18. Corzo J., León-Barrios M., Hernando-Rico V., Gutierrez-Navarro A.M. Precipitation of metallic cations by the acidic exopolysaccharides from Bradyrhizobium japonicum and Bradyrhizobium (Chamaecytisus) strain BGA-1. Applied and environmental microbiology. 1994. V. 60(12). P. 4531-4536. doi:10.1128/AEM.60.12.4531-4536.1994 19. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. (1995). Microbial biofilms. Annual Reviews in Microbiology. 1995. V. 49(1). P. 711-745. doi:10.1146/annurev.mi.49.100195.003431 20. Cremers H.C.C., Stevens K., Lugtenberg B.J., Wijffelman C.A., Batley M., Redmond J.W., Breedveld M.W., Zevenhuizen L.P. Unusual structure of the exopolysaccharide of Rhizobium leguminosarum bv. viciae strain 248. Carbohydrate research. 1991. V. 218. P. 185-200. doi:10.1016/0008-6215(91)84097-x 21. Cremers H.C., Batley M., Redmond J.W., Eydems L., Breedveld M.W., Zevehuizen L.P., Pees E., Wijffelman C.A., Lugtenberg B. J. (1990). Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4'-epimerase. Journal of Biological Chemistry, 1990. V. 265(34). P. 21122-21127. 22. D’Haeze W., Glushka J., De Rycke R., Holsters M., Carlson R.W. Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Molecular microbiology. 2004. V. 52(2). P. 485-500. doi:10.1111/j.1365-2958.2004.03989.x 23. Djordjevic S.P., Rolfe B.G., Batley M., Redmond J.W. (1986). The structure of the exopolysaccharide from Rhizobium sp. strain ANU280 (NGR234). Carbohydrate research. 1986. V. 148 (1). P. 87-99. doi:10.1016/0008-6215(86)80039-8 24. Donlan R.M. Biofilms: microbial life on surfaces. Emerging infectious diseases. 2002. V. 8(9). P. 881. doi:10.3201/eid0809.020063 25. Downie J.A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS microbiology reviews. 2010. V. 34(2). P. 150-170. doi:10.1111/j.1574-6976.2009.00205.x 26. Edwards A., Frederix M., Wisniewski-Dyé F., Jones J., Zorreguieta A., Downie J.A. The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. Journal of bacteriology. 2009. V. 191(9). P. 3059-3067. doi:10.1128/JB.01650-08 27. Ferreira P.A.A., Bomfeti C.A., Soares B.L., de Souza Moreira F.M. Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World Journal of Microbiology and Biotechnology. 2012. V. 28(5). P. 1947-1959. doi:10.1007/s11274-011-0997-7 28. Finan T.M., Weidner S., Wong K., Buhrmester J., Chain P., Vorhölter F.J., Hernandez-Lucas I., Becker A., Cowie A., Gouzy J., Golding B., Pühler A. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proceedings of the National Academy of Sciences. 2001. V. 98(17). P. 9889-9894. doi:10.1073/pnas.161294698 29. Finnie C., Hartley N.M., Findlay K.C., Downie J.A. The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Molecular microbiology. 1997. V. 25(1). P. 135-146. doi:10.1046/j.1365-2958.1997.4471803.x 30. Finnie C., Zorreguieta A., Hartley N. M., Downie J. A. Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. Journal of bacteriology. 1998. V. 180(7). P. 1691-1699. doi:10.1128/JB.180.7.1691-1699.1998 31. Flemming H.C., Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water science and technology. 2011. V. 43(6). P. 1-8. doi:10.1002/0471263397.env292 32. Foster L.J.R., Moy Y.P., Rogers P.L. Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances. Biotechnology letters, 2000. V. 22(22). P. 1757-1760. doi:10.1023/A:1005694018653 33. Fraysse N., Couderc F., Poinsot V. Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. European Journal of Biochemistry. 2003. V. 270(7). P.1365-1380. doi:10.1046/j.1432-1033.2003.03492.x 34. Fujishige N.A., Kapadia N.N., De Hoff P.L., Hirsch A.M. Investigations of Rhizobium biofilm formation. FEMS microbiology ecology. 2006. V. 56(2). P. 195-206. doi:10.1111/j.1574-6941.2005.00044.x 35. Ghosh P.K., Maiti T.K. Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume–bacteria symbiosis:—A Review. Achievements in the Life Sciences. 2016. V. 10 (2). P. 136-143. doi:10.1016/j.als.2016.11.003 36. Gibson K.E., Kobayashi H., Walker G.C. Molecular determinants of a symbiotic chronic infection. Annual review of genetics. 2008. V. 42. P. 413-441. doi:10.1146/annurev.genet.42.110807.091427 37. González A.G., Shirokova L.S., Pokrovsky O.S., Emnova E.E., Martínez R.E., Santana-Casiano J.M., González-Dávila M., Pokrovski G.S. Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. Journal of colloid and interface science. 2010. V. 350(1). P. 305-314. doi:10.1016/j.jcis.2010.06.020 38. Gonzalez J.E., York G.M., Walker G.C. Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene. 1996. V. 179 (1). P. 141-146. doi:10.1016/S0378-1119(96)00322-8 39. Gonzalez V., Santamaria R.I., Bustos P., Hernandez-Gonzalez I., Medrano-Soto A., Moreno-Hagelsieb G., Chandra Janga S., Ramírez M.A., Jiménez-Jacinto V., Collado-Vides J., Davila G. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proceedings of the National Academy of Sciences. 2006. V. 103(10). P. 3834-3839. doi:10.1073/pnas.0508502103 40. Guerreiro N., Ksenzenko V.N., Djordjevic M.A., Ivashina T.V., Rolfe B.G. Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. Journal of bacteriology. 2000. V. 182(16). P. 4521-4532. doi:10.1128/JB.182.16.4521-4532.2000 41. Guerrero G., Peralta H., Aguilar A., Díaz R., Villalobos M. A., Medrano-Soto A., Mora J. Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC evolutionary biology. 2005. V. 5(1). P. 55. doi:10.1186/1471-2148-5-55 42. Hussain H., Johnston A.W.B. Iron-dependent transcription of the regulatory gene ros of Agrobacterium radiobacter. Molecular plant-microbe interactions. 1997. V. 10(9). P.1087-1093. doi:10.1094/MPMI.1997.10.9.1087 43. Ivashina T.V., Ksenzenko V.N. Exopolysaccharide biosynthesis in Rhizobium leguminosarum: from genes to functions. In: Karunaratne D.N., editor. The Complex world of polysaccharides. In Tech; Rijeka, Croatia. 2012. P. 99–126. http://dx.doi.org/10.5772/51202 44. Ivashina T.V., Fedorova E.E., Ashina N.P., Kalinchuk N.A., Druzhinina T.N., Shashkov A.S., Shibaev V.N., Ksenzenko V.N. Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae–Pisum sativum symbiosis. Journal of applied microbiology. 2010. V. 109(2). P. 731-742. doi:10.1111/j.1365-2672.2010.04702.x 45. Ivashina T.V., Khmelnitsky M.I., Shiyapnikov M.G., Kanapin A.A., Ksenzenko V.N. The pss4 gene from Rhizobium leguminosarum bv viciae VF39: cloning, sequence and the possible role in polysaccharide production and nodule formation. Gene. 1994. V. 150(1). P. 111-116. doi:10.1016/0378-1119(94)90868-0 46. Ivashina T.V., Sadykov M.R., Chatuev B.M., Kanapin A.A., Shliapnikov M.G., Ksenzenko, V N. The Rhizobium leguminosarum bv viciae VF39 pssB gene product participates in symbiotic fixation of molecular nitrogen. In Doklady Akademii nauk. 1996. V. 350 (5). P. 712. 47. Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. International journal of molecular sciences. 2011. V. 12(11). P. 7898-7933. doi:10.3390/ijms12117898 48. Janczarek M., Rachwał K. Mutation in the pssA gene involved in exopolysaccharide synthesis leads to several physiological and symbiotic defects in Rhizobium leguminosarum bv. trifolii. International journal of molecular sciences. 2013. V. 14(12). P. 23711-23735. doi:10.3390/ijms141223711 49. Janczarek M., Skorupska, A. The Rhizobium leguminosarum bv. trifolii pssB gene product is an inositol monophosphatase that influences exopolysaccharide synthesis. Archives of microbiology. 2001.V. 175(2). P. 143-151. doi:10.1007/s002030000250 50. Janczarek M., Skorupska, A. Exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii is related to various metabolic pathways. Research in microbiology. 2003. V. 154(6). P. 433-442. doi:10.1016/S0923-2508(03)00113-X 51. Janczarek M., Skorupska A. Regulation of pssA and pssB gene expression in Rhizobium leguminosarum bv. trifolii in response to environmental factors. Antonie Van Leeuwenhoek. 2004. V. 85(3). P. 217-227. doi:10.1023/B:ANTO.0000020342.39867.fb 52. Janczarek M., Skorupska, A. The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production. Molecular plant-microbe interactions. 2007. V. 20(7). P. 867-881. doi:10.1094/MPMI-20-7-0867 53. Janczarek M., Skorupska A. Rhizobium leguminosarum bv. trifolii rosR gene expression is regulated by catabolic repression. FEMS microbiology letters. 2009. V. 291(1). P. 112-119. doi:10.1111/j.1574-6968.2008.01443.x 54. Janczarek M., Skorupska A. Modulation of rosR expression and exopolysaccharide production in Rhizobium leguminosarum bv. trifolii by phosphate and clover root exudates. International journal of molecular sciences. 2011. V. 12(6). P. 4132-4155. doi:10.3390/ijms12064132 55. Janczarek M., Jaroszuk-Sciseł J., Skorupska A. Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. trifolii. Antonie Van Leeuwenhoek. 2009. V. 96(4). P. 471-486. doi:10.1007/s10482-009-9362-3 56. Janczarek M., Kalita M., Skorupska A.M. New taxonomic markers for identification of Rhizobium leguminosarum and discrimination between closely related species. Archives of microbiology. 2009. V. 191(3). P. 207-219. doi:10.1007/s00203-008-0447-6 57. Janczarek M., Krol J., Skorupska, A. The pssB gene product of Rhizobium leguminosarum bv. trifolii is homologous to a family of inositol monophosphatases. FEMS microbiology letters. 1999. V. 173(2). P. 319-325. doi:10.1111/j.1574-6968.1999.tb13520.x 58. Janczarek M., Kutkowska J., Piersiak T., Skorupska A. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC microbiology. 2010. V. 10(1). P. 284. doi:10.1186/1471-2180-10-284 59. Janczarek M., Rachwał K., Turska-Szewczuk A. A mutation in pssE affects exopolysaccharide synthesis by Rhizobium leguminosarum bv. trifolii, its surface properties, and symbiosis with clover. Plant and Soil. 2017. V. 417(1-2). P. 331-347. doi:10.1007/s11104-017-3262-5 60. Jones K.M. Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. Journal of bacteriology. 2012. V. 194. P. 4322–4331. doi:10.1128/JB.00751-12 61. Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C. How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nature Reviews Microbiology. 2007. V. 5(8). P. 619. doi:10.1038/nrmicro1705 62. Joshi N., Ngwenya B.T., French C.E. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. Journal of hazardous materials. 2012. V. 241. P. 363-370. doi:10.1016/j.jhazmat.2012.09.057 63. Karr D.B., Liang R.T., Reuhs B.L., Emerich D.W. Altered exopolysaccharides of Bradyrhizobium japonicum mutants correlate with impaired soybean lectin binding, but not with effective nodule formation. Planta. 2000. V. 211 (2). P. 218-226. doi:10.1007/s004250000288 64. Kaur V., Bera M.B., Panesar P.S., Chopra H.K. Production and characterization of exopolysaccharide produced by Alcaligenes faecalis B14 isolated from indigenous soil. International journal of biotechnology and bioengineering research. 2013. V. 4(4). P. 365-374. 65. Kawaharada Y., Kelly S., Nielsen M.W., Hjuler C.T., Gysel K., Muszyński A., Carlson R.W., Thygesen M.B., Sandal N., Asmussen M.H., Vinther M., Andersen S.U., Krusell L., Thirup S., Jensen K.J., Ronson C.W., Blaise M., Radutoiu S., Stougaard J. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature. 2015. V. 523(7560). P. 308. doi:10.1038/nature14611 66. Kawaharada, Y., Nielsen, M. W., Kelly, S., James, E. K., Andersen, K. R., Rasmussen, S. R., Füchtbauer W., Madsen L.H., Heckmann A.B., Radutoiu S., Stougaard J. Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nature communications. 2017. V. 8. P. 14534. doi:10.1038/ncomms14534 67. Kazy S.K., Sar P., Singh S.P., Sen A.K., D'souza S. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World Journal of Microbiology and Biotechnology. 2002. V. 18(6). P. 583-588. doi:10.1023/A:1016354713289 68. Keller M., Roxlau A., Weng W.M., Schmidt M., Quandt J., Niehaus K., Jording D., Arnold W., Puhler, A. Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. MPMI-Molecular Plant Microbe Interactions. 1995. V. 8(2). P. 267-277. doi:10.1094/mpmi-8-0267 69. Kelly S.J., Muszyński A., Kawaharada Y., Hubber A.M., Sullivan J.T., Sandal N., Carlson R.W., Stougaard J., Ronson C.W. Conditional requirement for exopolysaccharide in the Mesorhizobium–Lotus symbiosis. Molecular plant-microbe interactions. 2013. V. 26(3). P. 319-329. doi:10.1094/MPMI-09-12-0227-R 70. Kopycinska M., Lipa P., Ciesla J., Koziel M., Janczarek M. Extracellular polysaccharide protects Rhizobium leguminosarum cells against zinc stress in vitro and during symbiosis with clover. Environmental microbiology reports. 2018. V. 10(3). P. 355-368. doi:10.1111/1758-2229.12646 71. Krehenbrink M., Downie J.A. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC genomics. 2008. V. 9(1). P. 55. doi:10.1186/1471-2164-9-55 72. Krol J.E., Mazur A., Marczak M., Skorupska A. Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum. Genomics. 2007. V. 89(2). P. 237-247. doi:10.1016/j.ygeno.2006.08.015 73. Krol J., Wielbo J., Mazur A., Kopcinska J., Lotocka B., Golinowski W., Skorupska A. Molecular characterization of pssCDE genes of Rhizobium leguminosarum bv. trifolii strain TA1: pssD mutant is affected in exopolysaccharide synthesis and endocytosis of bacteria. Molecular plant-microbe interactions. 1998. V. 11(11). P. 1142-1148. doi:10.1094/MPMI.1998.11.11.1142 74. Kutkowska J., Janczarek M., Kopcinska J., Urbanik-Sypniewska T., Skorupska A. Effects of pssB mutation on surface polysaccharides and symbiotic phenotype of Rhizobium leguminosarum bv trifolii. Acta Biol. Crac. Ser. Bot. 2007. V. 49 P. 81–89. 75. Latchford J.W., Borthakur D., Johnston A.W.B. The products of Rhizobium genes, psi and pss, which affect exopolysaccharide production, are associated with the bacterial cell surface. Molecular microbiology. 1991. V. 5(9). P. 2107-2114. doi:10.1111/j.1365-2958.1991.tb02140.x 76. Laus M.C., Logman T.J., Lamers G.E., Van Brussel A.A., Carlson R.W., Kijne J.W. A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular microbiology. 2006. V. 59(6). P. 1704-1713. doi:10.1111/j.1365-2958.2006.05057.x 77. Laus M.C., Logman T.J., Van Brussel A.A., Carlson R.W., Azadi P., Gao M.Y., Kijne J.W. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. Journal of bacteriology. 2004. V. 186(19). P. 6617-6625. doi:10.1128/JB.186.19.6617-6625.2004 78. Laus M.C., van Brussel A.A., Kijne J.W. Exopolysaccharide structure is not a determinant of host-plant specificity in nodulation of Vicia sativa roots. Molecular plant-microbe interactions. 2005. V. 18(11). P. 1123-1129. doi:10.1094/MPMI-18-1123 79. Ledin M. Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Science Reviews. 2000. V. 51(1-4). P. 1-31. doi:10.1016/S0012-8252(00)00008-8 80. Leigh J.A., Signer E.R., Walker G.C. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proceedings of the National Academy of Sciences. 1985. V. 82(18). P. 6231-6235. doi:10.1073/pnas.82.18.6231 81. Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic acids research. 2014. V. 42(D1). P. D490-D495. doi:10.1093/nar/gkt1178 82. Long S.R. Rhizobium symbiosis: nod factors in perspective. The Plant Cell. 1996. V. 8(10). P. 1885. doi:10.1105/tpc.8.10.1885 83. Lopez-Guerrero M.G., Ormeno-Orrillo E., Acosta J.L., Mendoza-Vargas A., Rogel M.A., Ramirez M.A., Rosenblueth M., Martínez-Romero J., Martinez-Romero E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid. 2012. V. 68(3). P. 149-158. doi:10.1016/j.plasmid.2012.07.002 84. Lopez-Lara I.M., Orgambide G., Dazzo F.B., Olivares J., Toro N. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules. Journal of bacteriology. 1993. V. 175 (10). P. 2826-2832. doi:10.1128/jb.175.10.2826-2832.1993 85. Louch H.A., Miller K.J. Synthesis of a low-molecular-weight form of exopolysaccharide by Bradyrhizobium japonicum USDA 110. Appl. Environ. Microbiol. 2001. V. 67 (2). P. 1011-1014. doi:10.1128/AEM.67.2.1011-1014.2001 86. Lynch J.M., Moffat A.J. Bioremediation–prospects for the future application of innovative applied biological research. Annals of Applied Biology. 2005. V. 146(2). P. 217-221. doi:10.1111/j.1744-7348.2005.040115.x 87. Marczak M., Dzwierzynska M., Skorupska A. Homo-and heterotypic interactions between Pss proteins involved in the exopolysaccharide transport system in Rhizobium leguminosarum bv. trifolii. Biological chemistry. 2013. V. 394(4). P. 541-559. doi:10.1515/hsz-2012-0161 88. Marczak M., Mazur A., Gruszecki W. I., Skorupska, A. PssO, a unique extracellular protein important for exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii. Biochimie. 2008. V. 90(11-12). P. 1781-1790. doi:10.1016/j.biochi.2008.08.004 89. Marczak M., Mazur A., Koper P., Żebracki K., Skorupska A. Synthesis of rhizobial exopolysaccharides and their importance for symbiosis with legume plants. Genes. 2017. V. 8(12). P. 360. doi:10.3390/genes8120360 90. Marczak M., Mazur A., Krol J.E., Gruszecki W.I., Skorupska A. Lipoprotein PssN of Rhizobium leguminosarum bv. trifolii: subcellular localization and possible involvement in exopolysaccharide export. Journal of bacteriology. 2006. V. 188(19). P. 6943-6952. doi:10.1128/JB.00651-06 91. Masson-Boivin C., Giraud E., Perret X., Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in microbiology. 2009. V. 17(10). P. 458-466. doi:10.1016/j.tim.2009.07.004 92. Matulova M., Toffanin R., Navarini L., Gilli R., Paoletti S., Cesaro A. NMR analysis of succinoglycans from different microbial sources: partial assignment of their 1H and 13C NMR spectra and location of the succinate and the acetate groups. Carbohydrate research. 1994. V. 265 (2). P. 167-179. doi:10.1016/0008-6215(94)00227-4 93. Mazur A., Krol J.E., Marczak M., Skorupska A. Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in Rhizobium leguminosarum bv. trifolii strain TA1. Journal of bacteriology. 2003. V. 185(8). P. 2503-2511. doi:10.1128/JB.185.8.2503-2511.2003 94. Mazur A., Krol J.E., Wielbo J., Urbanik-Sypniewska T., Skorupska A. Rhizobium leguminosarum bv. trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization. Molecular plant-microbe interactions. 2002. V. 15(4). P. 388-397. doi:10.1094/MPMI.2002.15.4.388 95. Mazur A., Marczak M., Krol J.E., Skorupska A. Topological and transcriptional analysis of pssL gene product: a putative Wzx-like exopolysaccharide translocase in Rhizobium leguminosarum bv. trifolii TA1. Archives of microbiology. 2005. V. 184(1). P. 1-10. doi:10.1007/s00203-005-0018-z 96. Mendrygal K.E., Gonzalez J.E. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. Journal of bacteriology. 2000. V. 182 (3). P. 599-606. doi:10.1128/jb.182.3.599-606.2000 97. Mimmack M.L., Borthakur D., Jones M.A., Downie J.A., Johnston A.W.B. The psi operon of Rhizobium leguminosarum biovar phaseoli: identification of two genes whose products are located at the bacterial cell surface. Microbiology. 1994. V. 140(5). P. 1223-1229. doi:10.1099/13500872-140-5-1223 98. Mimmack M.L., Hong G.F., Johnston A.W.B. Sequence and regulation of psrA, a gene on the Sym plasmid of Rhizobium leguminosarum biovar phaseoli which inhibits transcription of the psi genes. Microbiology. 1994. V. 140(3). P. 455-461. doi:10.1099/00221287-140-3-455 99. Muszynski A., Laus M., Kijne J.W., Carlson R.W. Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5). Glycobiology. 2010. V. 21(1). P. 55-68. doi:10.1093/glycob/cwq131 100. Nocelli N., Bogino P.C., Banchio E., Giordano W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials. 2016. V. 9(6). P. 418. doi:10.3390/ma9060418 101. O'Neill M.A., Darvill A.G., Albersheim P. The degree of esterification and points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli are not related to host range. Journal of Biological Chemistry. 1991. V. 266(15). P. 9549-9555. 102. Osinska-Jaroszuk M., Jaszek M., Starosielec M., Sulej J., Matuszewska A., Janczarek M., .Renata Bancerz R., Wydrych J.,Wiater A., Jarosz-Wilkolazka A. Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding. Bioprocess and biosystems engineering. 2018. V. 41(7). P. 973–989. doi:10.1007/s00449-018-1928-x 103. Pal A., Paul A.K. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Microbiology. 2008. V. 48(1). P. 49-64. doi: 10.1007/s12088-008-0006-5 104. Pellock B.J., Cheng H.P., Walker G.C. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. Journal of bacteriology. 2000. V. 182(15). P. 4310-4318. doi:10.1128/JB.182.15.4310-4318.2000 105. Pollock T.J., van Workum W.A., Thorne L., Mikolajczak M.J., Yamazaki M., Kijne J.W., & Armentrout R.W. Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in sphingomonas strain S88 and Rhizobium leguminosarum. Journal of bacteriology. 1998. V. 180(3). P. 586-593. doi:10.1128/JB.180.3.586-593.1998 106. Pulsawat W., Leksawasdi N., Rogers P.L., Foster L.J.R. Anions effects on biosorption of Mn (II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnology letters. 2003. V. 25(15). P. 1267-1270. doi:10.1023/A:1025083116343 107. Reeve W.G., Dilworth M.J., Tiwari R.P., Glenn A.R. Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR. Microbiology. 1996. V. 143(6). P 1951-1958. doi:10.1099/00221287-143-6-1951 108. Rinaudi L.V., Giordano W. An integrated view of biofilm formation in rhizobia. FEMS microbiology letters. 2010. V. 304(1). P. 1-11. doi:10.1111/j.1574-6968.2009.01840.x 109. Rinaudi L.V., Gonzalez J.E. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. Journal of bacteriology. 2009. V. 191 (23). P. 7216-7224. doi:10.1128/JB.01063-09 110. Robertsen B.K., Åman P., Darvill A.G., McNeil M., Albersheim P. Host-symbiont interactions: V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant physiology. 1981. V. 67(3). P. 389-400. doi:10.1104/pp.67.3.389 111. Rolfe B.G., Carlson R.W., Ridge R.W., Dazzo F.B., Mateos P.F., Pankhurst C.E. Defective infection and nodulation of clovers by exopolysaccharide mutants of Rhizobium leguminosarum bv. trifolii. Functional Plant Biology. 1996. V. 23(3). P. 285-303. doi:10.1071/PP9960285 112. Russo D.M., Williams A., Edwards A., Posadas D.M., Finnie C., Dankert M., Downie J.A. Zorreguieta, A. Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. Journal of bacteriology. 2006. V. 188(12). P. 4474-4486. doi:10.1128/JB.00246-06 113. Sadykov M.R., Ivashina T.V., Shlyapnikov M.G., Ksenzenko V.N., Kanapin A.A. Structural and functional organization of the exopolysaccharide biosynthesis genes in Rhizobium leguminosarum bv. viciae VF39. Molecular Biology. 1998. V. 32(5). P. 665-671. 114. Sanchez-Andujar B., Coronado C., Philip-Hollingsworth S., Dazzo F. B., Palomares A.J. Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv trifolii. Molecular and General Genetics MGG. 1997. V. 255(2). P. 131-140. doi:10.1007/s004380050481 115. Schue M., Fekete A., Ortet P., Brutesco C., Heulin T., Schmitt-Kopplin P., Achouak W., Santaella C. Modulation of metabolism and switching to biofilm prevail over exopolysaccharide production in the response of Rhizobium alamii to cadmium. PLoS One. 2011. V. 6(11). e26771. doi:10.1371/journal.pone.0026771 116. Singh P., Cameotra S.S. Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications. 2004. V. 319(2). P. 291-297. doi:10.1016/j.bbrc.2004.04.155 117. Singh R., Paul D., Jain R.K. Biofilms: implications in bioremediation. Trends in microbiology. 2006. V. 14(9). P. 389-397. doi:10.1016/j.tim.2006.07.001 118. Skorupska A., Janczarek M., Marczak M., Mazur A., Król J. (2006). Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microbial cell factories. 2006. V. 5(1). P. 7. doi:10.1186/1475-2859-5-7 119. Slaveykova V.I., Parthasarathy N., Dedieu K., Toescher D. Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. Environmental pollution. 2010. V. 158(8). P. 2561-2565. doi:10.1016/j.envpol.2010.05.016 120. Sorroche F.G., Rinaudi L.V., Zorreguieta A., Giordano W. EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Current microbiology. 2010. V. 61 (5). P. 465-470. doi:10.1007/s00284-010-9639-9 121. Sorroche F.G., Spesia M.B., Zorreguieta Á., Giordano W. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Applied and environmental microbiology. 2012. AEM-07826. doi:10.1128/AEM.07826-11 122. Staehelin C., Forsberg L.S., D'Haeze W., Gao M.Y., Carlson R.W., Xie Z.P., Pellock B.J., Jones K.M., Walker G.C., Streit W.R., Broughton, W.J. Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. Journal of bacteriology. 2006. V. 188 (17). P. 6168-6178. doi:10.1128/JB.00365-06 123. Stredansky M., Conti E., Bertocchi C., Matulova,M., Zanetti F. Succinoglycan production by Agrobacterium tumefaciens. Journal of fermentation and bioengineering. 1998. V. 85 (4). P. 398-403. doi:10.1007/s002530051528 124. Szewczuk-Karpisz K., Wisniewska M., Pac M., Choma A., Komaniecka I. Sinorhizobium meliloti 1021 exopolysaccharide as a flocculant improving chromium (III) oxide removal from aqueous solutions. Water, Air, & Soil Pollution. 2014. V. 225 (8). P. 2052. doi:10.1007/s11270-014-2052-4 125. van Workum W.A., Cremers H.C.C., Wijfjes A.H., van der Kolk C., Wijffelman C.A., Kijne J.W. Cloning and characterization of four genes of Rhizobium leguminosarum bv. trifolii involved in exopolysaccharide production and nodulation. Molecular plant-microbe interactions. 1997. V. 10(2). P. 290-301. doi:10.1094/MPMI.1997.10.2.290 126. Vinardell J., Ollero F.J., Hidalgo Á., López-Baena F.J., Medina C., Ivanov-Vangelov K., Parada M., Madinabeitia N., Espuny Mdel R., Bellogín R.A., Camacho M., Rodríguez-Navarro D.N., Soria-Díaz M.E., Gil-Serrano A.M., Ruiz-Sainz J.E. NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103. Molecular plant-microbe interactions. 2004. V. 17(6). P. 676-685. doi:10.1094/MPMI.2004.17.6.676 127. Vu B., Chen M., Crawford R.J., Ivanova E.P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009. V. 14(7) P. 2535-2554. doi:10.3390/molecules14072535 128. Wang L.X., Wang,Y., Pellock B., Walker G.C. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. Journal of bacteriology. 1999. V. 181(21). P.6788-6796 doi:10.1128/JB.181.21.6788-6796.1999 129. Wielbo J., Skorupska A. Influence of phosphate and ammonia on the growth, exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii TA1 with clover (Trifolium pratense). Acta Biologica Hungarica. 2008. V. 59(1). P. 115-127. doi:10.1556/ABiol.59.2008.1.10 130. Wielbo J., Marek-Kozaczuk M., Kubik-Komar A., Skorupska A. Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Canadian journal of microbiology. 2007. V. 53(8). P. 957-967. doi:10.1139/W07-053 131. Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A. Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules. Applied and environmental microbiology. 2010. V. 76(14). P. 4593-4600. doi:10.1128/AEM.00667-10 132. Wielbo J., Mazur A., Krol J.E., Marczak M., Skorupska A. Environmental modulation of the pssTNOP gene expression in Rhizobium leguminosarum bv. trifolii. Canadian journal of microbiology. 2004. V. 50(3). P. 201-211. doi:10.1139/w04-004 133. Wielbo J., Mazur A., Krol J., Marczak M., Kutkowska J., Skorupska A. Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Archives of microbiology. 2004. V. 182(4). P. 331-336. doi:10.1007/s00203-004-0723-z 134. Young J.P.W., Crossman L.C., Johnston A.W., Thomson N.R., Ghazoui Z.F., Hull K.H. et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome biology. 2006. V. 7(4). R34. doi:10.1186/gb-2006-7-4-r34 135. Younis M. Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J. Agric. Sci. 2007. V. 3. P. 111–122. 136. Zorreguieta A., Finnie C., Downie J.A. Extracellular glycanases of Rhizobium leguminosarum are activated on the cell surface by an exopolysaccharide-related component. Journal of bacteriology. 2000. V. 182(5). P. 1304-1312. doi:10.1128/JB.182.5.1304-1312.2000 137. Белимов А.А., Тихонович И.А. Микробиологические аспекты устойчивости и аккумуляции тяжелых металлов у растений (обзор).Сельскохозяйственная биология. 2011. № 3. С. 10-15. 138. Овцына А. О., Тихонович И. А. Структура, функции и возможность практического применения сигнальных молекул, инициирующих развитие бобово-ризобиального симбиоза. Экологическая генетика. 2004. Т. 2(3). C. 14-24.