Genomic and phenotypic characterization of Rhodopseudomonas sp. RCAM05734 isolated from Svalbard permafrost
16.10.2025
Авторы:
Название:
Genomic and phenotypic characterization of Rhodopseudomonas sp. RCAM05734 isolated from Svalbard permafrost
Страницы:
133-138
We report the isolation and characterization of Rhodopseudomonas sp. RCAM05734 from the upper horizon of Holocene permafrost on the southern shore of Isfjorden, Svalbard. The strain was recovered on R2A at 5°C and sequenced using Oxford Nanopore long reads; assembly produced a single circular chromosome of 6.65 Mb (GC 63.9%) encoding 6,183 predicted proteins and 65 RNA genes (GenBank CP199742; SRA SRS26238712). Although the 16S rRNA gene shows high similarity (98%) to several Rhodopseudomonas type strains, average nucleotide identity values (78–80%) indicate that RCAM05734 is genomically distinct and may represent a novel species. The genome contains three fix loci and an almost complete nif gene complement, consistent with potential for nitrogen fixation under microaerobic conditions. Genes implicated in plant‑associated functions (acdS/acdR, iaaM/iaaH), multiple cold‑shock proteins, and accessory nod regulatory loci were also identified. RCAM05734 encodes extensive aromatic‑compound catabolic pathways, including both catechol and protocatechuate branches of the β‑ketoadipate pathway and meta‑cleavage enzymes. Phenotypic profiling (Biolog GEN III) revealed utilization of diverse mono‑ and disaccharides and selected carboxylic acids, limited halotolerance (growth at 1% NaCl) and activity at mildly acidic pH. Collectively, genomic and physiological data suggest that RCAM05734 harbors metabolic versatility relevant to carbon and nitrogen turnover, stress tolerance, and potential plant‑growth promotion in cold Arctic conditions.
- Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J Mol Biol. 1990. 215(3). 403–410. doi:10.1016/S0022-2836(05)80360-2
- De Coster W, D’Hert S, Schultz DT et al. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018. 34(15). 2666–2669. doi:10.1093/bioinformatics/bty149
- Descamps S, Aars J, Fuglei E et al. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Glob. Change Biol. 2017. 23(2). 490–502. doi:10.1111/gcb.13381
- Do Thi P, Pham BY, Le Dam BL et al. Evaluating the sulfur oxidation capability of a Rhodopseudomonas palustris strain by gene and enzyme analyses for potential applications in environmental bioremediation. VNU J Sci: Earth Environ Sci. 2024. 40(1S). doi:10.25073/2588-1094/vnuees.5194
- Elvevold S, Dallmann W, Blomeier M. Geology of Svalbard. 2007. 36 p.
- Ernakovich JG, Barbato RA, Rich VI et al. Microbiome assembly in thawing permafrost and its feedbacks to climate. Glob. Change Biol. 2022. 28(17). 5007–5026. doi:10.1111/gcb.16231
- Gallagher BM, Morrison HM, Bose A. Reductive evolution and genomic reduction in Rhodopseudomonas. Appl. Environ. Microbiol. 2025. 91(8). e00445-25. doi:10.1128/aem.00445-25
- Gurevich A, Saveliev V, Vyahhi N et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013. 29(8). 1072-1075. doi:10.1093/bioinformatics/btt086
- Guro P, Karaevskaya E, Karlov D et al. Complete Genome Sequence of Rhodopseudomonas sp. Strain P2A-2r, Isolated from Arctic Soil. Microbiol. Resour. Announc. 2023. 12(3). e00013-23. doi:10.1128/mra.00013-23
- Hiraishi A, Ueda Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int. J. Syst. Evol. Microbiol. 1994. 44(4). 665–673. doi:10.1099/00207713-44-4-665
- Kolmogorov M, Yuan J, Lin Y et al. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019. 37(5). 540–546. doi:10.1038/s41587-019-0072-8
- Lee I, Ouk Kim Y, Park SC et al. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016. 66(2). 1100–1103. doi:10.1099/ijsem.0.000760
- Li M, Ning P, Sun Y et al. Characteristics and application of Rhodopseudomonas palustris as a microbial cell factory. Front. Bioeng. Biotechnol. 2022. 10. 897003. doi:10.3389/fbioe.2022.897003
- Mutharasaiah K, Govindareddy V, Chandrakant K. Biodegradation of 2-chlorophenol by Rhodopseudomonas palustris. Bioremediation J. 2012. 16(1). 1–8. doi:10.1080/10889868.2011.628348
- Osokin NI, Sosnovskiy AV, Nakalov PR et al. Climate change and dynamics of permafrost soils on the Spitsbergen archipelago. Led i Sneg. 2012. 52(2). 115–120. (In Russian)
- Pfennig N. Rhodopseudomonas acidophila, sp. n., a New Species of the Budding Purple Nonsulfur Bacteria. J Bacteriol. 1969. 99(2). 597–602. doi:10.1128/jb.99.2.597-602.1969
- Ramana VV, Chakravarthy SK, Raj PS et al. Descriptions of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris. Int. J. Syst. Evol. Microbiol. 2012. 62(8). 1790–1798. doi:10.1099/ijs.0.026815-0
- Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014. 30(14). 2068–2069. doi:10.1093/bioinformatics/btu153
- Spolaor A, Scoto F, Larose C et al. Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers. The Cryosphere. 2024. 18(1). 307–320. doi:10.5194/tc-18-307-2024
- Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021. 38(7). 3022-3027. doi:10.1093/molbev/msab120
