T2T genomes of higher plants
01.07.2025
Авторы:
Название:
T2T genomes of higher plants
Страницы:
65 – 76
In 2000, a major breakthrough occurred in plant genomics: an article was published reporting the sequencing of the first plant genome, which belonged to Arabidopsis thaliana and had a size of just over 100 million bp. Over the next quarter century, the era of DNA sequencing has yielded approximately 4 thousand genomes of different assembly levels for approximately 2 thousand plant species. Thus, due to the development of DNA sequencing technologies, genomes have begun to be assembled at the chromosomal level from "telomere to telomere," which is termed "T2T sequencing." More than 2 decades later, the Arabidopsis genome was assembled in T2T format, but earlier, similar T2T genomes had been assembled for rice Oryza sativa and banana Musa acuminata. A T2T genome of bread hexaploid wheat Triticum aestivum, with a size of 14.5 billion bp, more than 100 times the size of the Arabidopsis genome, was assembled recently. A total of 166 plant T2T genomes have already been sequenced for 108 plant species from 80 genera. At the same time, most T2T genomes are characterized by mosaic consensus assembly; therefore, T2T plant genomes with phased assembly by haplotypes and T2T pangenomes with similar phased assembly are of greater interest. This is because it is important to know all gene alleles of crossed or edited specimens for breeding and genomic editing.
- Alves RM, de Abreu VAC, Oliveira RP et. al. Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation. Gigascience. 2024. V.13. giae027. doi:10.1093/gigascience/giae027 2. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000. V.408(6814). P.796-815. doi:10.1038/35048692 3. Bai M, Jiang S, Chu S et al. The telomere-to-telomere (T2T) genome of Peucedanum praeruptorum Dunn provides insights into the genome evolution and coumarin biosynthesis. Gigascience. 2024. V.13. giae025. doi:10.1093/gigascience/giae025 4. Bao J, Zhang H, Wang F et al. Telomere-to-telomere genome assemblies of two Chinese Baijiu-brewing sorghum landraces. Plant Commun. 2024. V.5(6). 100933. doi:10.1016/j.xplc.2024.100933 5. Baymiev Al.Kh., Chemeris D.A., Sakhabutdinova A.R. et al. In higher plants as an example, one can see that the era of sequencing of their diploid genomes is coming. Biomics. 2025. V.17(1). P. 17-41. DOI:10.31301/2221-6197.bmcs.2025-3 6. Belser C, Baurens FC, Noel B et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol. 2021. V.4(1). 1047. doi:10.1038/s42003-021-02559-3 7. Bevan M, Mayer K, White O et al. Sequence and analysis of the Arabidopsis genome. Curr Opin Plant Biol. 2001. V.4(2). P.105-110. doi:10.1016/s1369-5266(00)00144-8 8. Chen J, Wang Z, Tan K et al. A complete telomere-to-telomere assembly of the maize genome. Nat Genet. 2023. V.55(7). P.1221-1231. doi:10.1038/s41588-023-01419-6 9. Chen W, Wang X, Sun J et al. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nat Commun. 2024. V.15(1). 4295. doi:10.1038/s41467-024-48643-0 10. Chen Y, Zhang X, Wang L et al. Telomere-to-telomere genome assembly of Eleocharis dulcis and expression profiles during corm development. Sci Data. 2024. V.11(1). 869. doi:10.1038/s41597-024-03717-y 11. Cui J, Zhu C, Shen L, et al. The gap-free genome of Forsythia suspense illuminates the intricate landscape of centromeres. Hortic Res. 2024. V.11(9). uhae185. doi:10.1093/hr/uhae185 12. Deng Y, Liu S, Zhang Y et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant. 2022. V.15(8). 1268-1284. doi:10.1016/j.molp.2022.06.010 13. Djari A, Madignier G, Di Valentin O et al. Haplotype-resolved genome assembly and implementation of VitExpress, an open interactive transcriptomic platform for grapevine. Proc Natl Acad Sci USA. 2024. V.121(23). e2403750121. doi:10.1073/pnas.2403750121 14. Du H, He Y, Chen M et al. A near-complete genome assembly of Fragaria iinumae. BMC Genomics. 2025. V.26(1). 253. doi:10.1186/s12864-025-11440-0 15. Fang H, Wu J, Xie L et al. Telomere-to-telomere genome assembly of eggplant (Solanum melongena L.) promotes gene fine localization of the green stripe (GS) in pericarp. Int J Biol Macromol. 2025. V.284(2). 138094. doi:10.1016/j.ijbiomac.2024.138094 16. Feng J, Zhang W, Chen C et al. The pineapple reference genome: Telomere-to-telomere assembly, manually curated annotation, and comparative analysis. J Integr Plant Biol. 2024. V.66(10). P.2208-2225. doi:10.1111/jipb.13748 17. Feng K, Liu JL, Sun N et al. Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica. Plant Biotechnol J. 2025. V.20. doi:10.1111/pbi.70062 18. Ferguson S, Bar-Ness YD, Borevitz J, Jones A. A telomere-to-telomere Eucalyptus regnans genome: unveiling haplotype variance in structure and genes within one of the world's tallest trees. BMC Genomics. 2024. V.25(1). 913. doi:10.1186/s12864-024-10810-4 19. Fu A, Zheng Y, Guo J et al. Telomere-to-telomere genome assembly of bitter melon (Momordica charantia L. var. abbreviata Ser.) reveals fruit development, composition and ripening genetic characteristics. Hortic Res. 2022. V.10(1). uhac228. doi:10.1093/hr/uhac228 20. Fujiwara K, Toyoda A, Biswa BB et al. Near Complete Genome Assembly of the Oshima Cherry Cerasus speciosa. Sci Data. 2025. V.12(1). 162. doi:10.1038/s41597-025-04388-z 21. Gao B, Sun PC, Song YC et al. A telomere-to-telomere genome assembly of Salix cheilophila reveals its evolutionary signatures for environmental adaptation. Plant Commun. 2025. V.6(2). 101182. doi:10.1016/j.xplc.2024.101182 22. Gao W, Wang S, Jiang T et al. Chromosome-scale and haplotype-resolved genome assembly of Populus trichocarpa. Hortic Res. 2025. V.12(4). uhaf012. doi:10.1093/hr/uhaf012 23. Gao Y, Xu D, Hu Z. Telomere-to-telomere genome assembly of Oldenlandia diffusa. DNA Res. 2024. V.31(3). dsae012. doi:10.1093/dnares/dsae012 24. Garg V, Khan AW, Fengler K et al. Near-gapless genome assemblies of Williams 82 and Lee cultivars for accelerating global soybean research. Plant Genome. 2023. V.16(4). e20382. doi:10.1002/tpg2.20382 25. Garg V, Bohra A, Mascher M et al. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet. 2024. V.56(9). P.1788-1799. doi:10.1038/s41588-024-01830-7 26. Guo M, Bi G, Wang H et al. Genomes of autotetraploid wild and cultivated Ziziphus mauritiana reveal polyploid evolution and crop domestication. Plant Physiol. 2024. V.196(4). P.2701-2720. doi:10.1093/plphys/kiae512 27. Han H, Salinas N, Barbey CR et al. A telomere-to-telomere phased genome of an octoploid strawberry reveals a receptor kinase conferring anthracnose resistance. Gigascience. 2025. V.14. giaf005. doi:10.1093/gigascience/giaf005 28. Han X, Zhang Y, Zhang Q et al. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Mol Plant. 2023. V.16(2). P.452-470. doi:10.1016/j.molp.2022.12.022 29. He Q, Wang C, He Q et al. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol Plant. 2024. V.17(2). P.219-222. doi:10.1016/j.molp.2023.12.017 30. He S, Weng D, Zhang Y et al. A telomere-to-telomere reference genome provides genetic insight into the pentacyclic triterpenoid biosynthesis in Chaenomeles speciosa. Hortic Res. 2023. V.10(10). uhad183. doi:10.1093/hr/uhad183 31. Hong L, Xu XD, Yang L et al. Construction and analysis of telomere-to-telomere genomes for 2 sweet oranges: Longhuihong and Newhall (Citrus sinensis). Gigascience. 2024. V.13. giae084. doi:10.1093/gigascience/giae084 32. Hou X, Wang D, Cheng Z et al. A near-complete assembly of an Arabidopsis thaliana genome. Mol Plant. 2022. V.15(8). P.1247-1250. doi:10.1016/j.molp.2022.05.014 33. Hu G, Wang Z, Tian Z et al. A telomere-to-telomere genome assembly of cotton provides insights into centromere evolution and short-season adaptation. Nat Genet. 2025. V.57(4). P.1031-1043. doi:10.1038/s41588-025-02130-4 34. Hu T, Duan L, Shangguan L et al. Haploid-Phased Chromosomal Telomere-to-Telomere Genome Assembly of Medicinal Plant Uncaria rhynchophylla Dissects Genetic Controls on the Biosynthesis of Bioactive Alkaloids. Plant Cell Environ. 2025. V.48(3). P.1932-1946. doi:10.1111/pce.15257 35. Huang G, Bao Z, Feng L et al. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nat Genet. 2024. V.56(9). P.1953-1963. doi:10.1038/s41588-024-01877-6 36. Huang HR, Liu X, Arshad R et al. Telomere-to-telomere haplotype-resolved reference genome reveals subgenome divergence and disease resistance in triploid Cavendish banana. Hortic Res. 2023. V.10(9). uhad153. doi:10.1093/hr/uhad153 37. Jia KH, Zhang X, Li LL et al. Telomere-to-telomere genome assemblies of cultivated and wild soybean provide insights into evolution and domestication under structural variation. Plant Commun. 2024. V.5(8). 100919. doi:10.1016/j.xplc.2024.100919 38. Jia KH, Li G, Wang L et al. Telomere-to-telomere, gap-free genome of mung bean (Vigna radiata) provides insights into domestication under structural variation. Hortic Res. 2024. V.12(3). uhae337. doi:10.1093/hr/uhae337 39. Jiang D, Li Y, Zhuge F et al. The telomere-to-telomere genome of flowering cherry (Prunus campanulata) reveals genomic evolution of the subgenus Cerasus. Gigascience. 2025. V.14. giaf009. doi:10.1093/gigascience/giaf009 40. Ibarra-Laclette E, Lyons E, Hernández-Guzmán G et al. Architecture and evolution of a minute plant genome. Nature. 2013. V.498(7452). P.94-98. doi:10.1038/nature12132 41. Kuluev B.R., Chemeris D.A., Gerashchenkov G.A. et al. Pangenomics of plants. Biomics. 2025. V.17(1). P. 42 - 64. DOI:10.31301/2221-6197.bmcs.2025-4 42. Lan L, Leng L, Liu W et al. The haplotype-resolved telomere-to-telomere carnation (Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression. Hortic Res. 2023. V.11(1). uhad244. doi:10.1093/hr/uhad244 43. Li B, Yang Q, Yang L et al. A gap-free reference genome reveals structural variations associated with flowering time in rapeseed (Brassica napus). Hortic Res. 2023. V.10(10). uhad171. doi:10.1093/hr/uhad171 44. Li F, Xu S, Xiao Z et al. Gap-free genome assembly and comparative analysis reveal the evolution and anthocyanin accumulation mechanism of Rhodomyrtus tomentosa. Hortic Res. 2023. V.10(3). uhad005. doi:10.1093/hr/uhad005 45. Li G, Tang L, He Y et al. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. Hortic Res. 2023. V.10(10). uhad182. doi:10.1093/hr/uhad182 46. Li K, Chen R, Abudoukayoumu A et al. Haplotype-resolved T2T reference genomes for wild and domesticated accessions shed new insights into the domestication of jujube. Hortic Res. 2024. V.11(5). uhae071. doi:10.1093/hr/uhae071 47. Li M, Chen C, Wang H et al. Telomere-to-telomere genome assembly of sorghum. Sci Data. 2024. V.11(1). 835. doi:10.1038/s41597-024-03664-8 48. Li Q, Qiao X, Li L et al. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. Plant Commun. 2024. V.5(10). 101000. doi:10.1016/j.xplc.2024.101000 49. Li R, Huang X, Yang L et al. Whole genome sequencing of Castanea mollissima and molecular mechanisms of sugar and starch synthesis. Front Plant Sci. 2024. V.15. 1455885. doi:10.3389/fpls.2024.1455885 50. Liao Z, Zhang T, Lei W et al. A telomere-to-telomere reference genome of ficus (Ficus hispida) provides new insights into sex determination. Hortic Res. 2023. V.11(1). uhad257. doi:10.1093/hr/uhad257 51. Liu S, Li K, Dai X et al. A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat. Nat Genet. 2025. V.57(4). P.1008-1020. doi:10.1038/s41588-025-02137-x 52. Liu W, Liu C, Chen S et al. A nearly gapless, highly contiguous reference genome for a doubled haploid line of Populus ussuriensis, enabling advanced genomic studies. For Res (Fayettev). 2024. V.4. e019. doi:10.48130/forres-0024-0016 53. Liu W, Xu S, Ou C et al. T2T genomes of carrot and Alternaria dauci and their utility for understanding host-pathogen interactions during carrot leaf blight disease. Plant J. 2024. V.120(4). P.1643-1661. doi:10.1111/tpj.17049 54. Liu X, Arshad R, Wang X et al. The phased telomere-to-telomere reference genome of Musa acuminata, a main contributor to banana cultivars. Sci Data. 2023. V.10(1). 631. doi:10.1038/s41597-023-02546-9 55. Luo H, Wang X, You C et al. Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance. Sci China Life Sci. 2024. V.67(1). P.149-160. doi:10.1007/s11427-023-2463-y 56. Luo Y, Liu Z, Jin Z et al. Phased T2T genome assemblies facilitate the mining of disease-resistance genes in Vitis davidii. Hortic Res. 2025. V.12(2). uhae306. doi:10.1093/hr/uhae306 57. Lv J, Jiang C, Wu W et al. The gapless genome assembly and multi-omics analyses unveil a pivotal regulatory mechanism of oil biosynthesis in the olive tree. Hortic Res. 2024. V.11(8). uhae168. doi:10.1093/hr/uhae168 58. Ma B, Wang H, Liu J et al. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Hortic Res. 2023. V.10(7). uhad111. doi:10.1093/hr/uhad111 59. Mo C, Wang H, Wei M et al. Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. Plant J. 2024. V.118(6). P.2249-2268. doi:10.1111/tpj.16705 60. Mu W, Darian JC, Sung WK et al. The haplotype-resolved T2T genome for Bauhinia × blakeana sheds light on the genetic basis of flower heterosis. Gigascience. 2025. V.14. giaf044. doi:10.1093/gigascience/giaf044 61. Neale D.B., Zimin A.V., Zaman S. et al. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (Bethesda). 2022. V.12(1). jkab380. doi:10.1093/g3journal/jkab380 62. Niu S., Li J., Bo W. et al. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell. 2022. V.185(1). P.204-217.e14. doi:10.1016/j.cell.2021.12.006 63. Nystedt B., Street N.R., Wetterbom A. et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013. V.497(7451). P.579-584. doi:10.1038/nature12211 64. Pei T, Zhu S, Liao W et al. Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. Hortic Res. 2023. V.10(12). uhad235. doi:10.1093/hr/uhad235 Peng D, Hong Z, Kan S et al. The telomere-to-telomere (T2T) genome provides insights into the evolution of specialized centromere sequences in sandalwood. Gigascience. 2024. V.13. giae096. doi:10.1093/gigascience/giae096 65. Qi Y, Shan D, Cao Y et al. Telomere-to-telomere Genome Assembly of two representative Asian and European pear cultivars. Sci Data. 2024. V.11(1). 1170. doi:10.1038/s41597-024-04015-3 66. Qian L, Yang L, Liu X et al. Natural variations in TT8 and its neighboring STK confer yellow seed with elevated oil content in Brassica juncea. Proc Natl Acad Sci USA. 2025. V.122(5). e2417264122. doi:10.1073/pnas.2417264122 67. Sato MP, Arafa RA, Rakha MT et al. Near-complete telomere-to-telomere de novo genome assembly in Egyptian clover (Trifolium alexandrinum). DNA Res. 2024. V.32(1). dsae036. doi:10.1093/dnares/dsae036 68. Sato MP, Iwakami S, Fukunishi K et al. Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon. DNA Res. 2023. V.30(5). dsad023. doi:10.1093/dnares/dsad023 69. Shang L, He W, Wang T et al. A complete assembly of the rice Nipponbare reference genome. Mol Plant. 2023. V.16(8). P.1232-1236. doi:10.1016/j.molp.2023.08.003 70. Shen F, Xu S, Shen Q et al. The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits. Nat Commun. 2023. V.14(1). 4102. doi:10.1038/s41467-023-39800-y 71. Shi X, Cao S, Wang X et al. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic Res. 2023. V.10(5). uhad061. doi:10.1093/hr/uhad061 72. Singh J, Gudi S, Maughan PJ et al. Genomes of Aegilops umbellulata provide new insights into unique structural variations and genetic diversity in the U-genome for wheat improvement. Plant Biotechnol J. 2024. V.22(12). P.3505-3519. doi:10.1111/pbi.14470 73. Song JM, Xie WZ, Wang S et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol Plant. 2021. V.14(10). P.1757-1767. doi:10.1016/j.molp.2021.06.018 74. Song WL, Chen BZ, Feng L et al. Telomere-to-telomere genome assembly and 3D chromatin architecture of Centella asiatica insight into evolution and genetic basis of triterpenoid saponin biosynthesis. Hortic Res. 2025. V.12(5). uhaf037. doi:10.1093/hr/uhaf037 75. Song Y, Zhang Y, Wang X et al. Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis. Hortic Res. 2024. V.11(6). uhae107. doi:10.1093/hr/uhae107 76. Su Y, Yang X, Wang Y et al. Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication. Plant Physiol. 2024. V.195(4). P.2799-2814. doi:10.1093/plphys/kiae258 77. Sun Y, Shang L, Zhu QH, Fan L, Guo L. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci. 2022. V.27(4). P.391-401. doi:10.1016/j.tplants.2021.10.006 78. Sun M, Yao C, Shu Q et al. Telomere-to-telomere pear (Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. Hortic Res. 2023. V.10(11). uhad201. doi:10.1093/hr/uhad201 79. Wang B, Zhang R, Sun W, Yang J. A nearly telomere-to-telomere diploid genome assembly of Firmiana kwangsiensis, a threatened species in China. Sci Data. 2024. V.11(1). 1394. doi:10.1038/s41597-024-04250-8 80. Wang B, Yang X, Jia Y et al. High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads. Genomics Proteomics Bioinformatics. 2022. V.20(1). P.4-13. doi:10.1016/j.gpb.2021.08.003 81. Wang C, Liu L, Yin M et al. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun Biol. 2024. V.7(1). 1007. doi:10.1038/s42003-024-06660-1 82. Wang F, Bao J, Zhang H et al. A telomere-to-telomere genome assembly of Chinese grain sorghum 654. Sci Data. 2025. V.12(1). 460. doi:10.1038/s41597-025-04791-6 83. Wang H, Wang J, Chen C et al. A complete reference genome of broomcorn millet. Sci Data. 2024. V.11(1). 657. doi:10.1038/s41597-024-03489-5 84. Wang J, Xu D, Sang YL et al. A telomere-to-telomere gap-free reference genome of Chionanthus retusus provides insights into the molecular mechanism underlying petal shape changes. Hortic Res. 2024. V.11(12). uhae249. doi:10.1093/hr/uhae249 85. Wang K, Jin J, Wang J, Wang X, Sun J, Meng D, Wang X, Wang Y, Guo L. The complete telomere-to-telomere genome assembly of lettuce. Plant Commun. 2024. V.5(10). 101011. doi:10.1016/j.xplc.2024.101011 86. Wang L, Li LL, Chen L et al. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak (Quercus variabilis). Front Plant Sci. 2023. V.14. 1290913. doi:10.3389/fpls.2023.1290913 87. Wang L, Zhang M, Li M et al. A telomere-to-telomere gap-free assembly of soybean genome. Mol Plant. 2023. V.16(11). P.1711-1714. doi:10.1016/j.molp.2023.08.012 88. Wang X, Li H, Shen T et al. A near-complete genome sequence of einkorn wheat provides insight into the evolution of wheat A subgenomes. Plant Commun. 2024. V.5(5). 100768. doi:10.1016/j.xplc.2023.100768 89. Wang X, Sun Z, Qi F et al. A telomere-to-telomere genome assembly of the cultivated peanut. Mol Plant. 2025. V.18(1). P.5-8. doi:10.1016/j.molp.2024.12.001 90. Wang X, Tu M, Wang Y et al. Telomere-to-telomere and gap-free genome assembly of a susceptible grapevine species (Thompson Seedless) to facilitate grape functional genomics. Hortic Res. 2024. V.11(1). uhad260. doi:10.1093/hr/uhad260 91. Wang X, Zhou P, Hu X et al. T2T genome, pan-genome analysis, and heat stress response genes in Rhododendron species. Imeta. 2025. V.4(2). e70010. doi:10.1002/imt2.70010 92. Wang Y, Dong M, Wu Y et al. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha. Mol Hortic. 2023. V.3(1). 4. doi:10.1186/s43897-023-00052-5 93. Wang YH, Liu PZ, Liu H et al. Telomere-to-telomere carrot (Daucus carota) genome assembly reveals carotenoid characteristics. Hortic Res. 2023. V.10(7). uhad103. doi:10.1093/hr/uhad103 94. Wang Z, Zhou J, Pan J et al. Insights into the Superrosids phylogeny and flavonoid synthesis from the telomere-to-telomere gap-free genome assembly of Penthorum chinense Pursh. Hortic Res. 2023. V.11(2). uhad274. doi:10.1093/hr/uhad274 95. Wei C, Gao L, Xiao R et al. Complete telomere-to-telomere assemblies of two sorghum genomes to guide biological discovery. Imeta. 2024. V.3(2). e193. doi:10.1002/imt2.193 96. Wei M, Huang Y, Mo C et al. Telomere-to-telomere genome assembly of melon (Cucumis melo L. var. inodorus) provides a high-quality reference for meta-QTL analysis of important traits. Hortic Res. 2023. V.10(10). uhad189. doi:10.1093/hr/uhad189 97. Xie L, Gong X, Yang K et al. Technology-enabled great leap in deciphering plant genomes. Nat Plants. 2024. V.10(4). P.551-566. doi:10.1038/s41477-024-01655-6 98. Xu M, Gao Q, Jiang M et al. A novel genome sequence of Jasminum sambac helps uncover the molecular mechanism underlying the accumulation of jasmonates. J Exp Bot. 2023. V.74(4). P.1275-1290. doi:10.1093/jxb/erac464 99. Xu XD, Zhao RP, Xiao L et al. Telomere-to-telomere assembly of cassava genome reveals the evolution of cassava and divergence of allelic expression. Hortic Res. 2023. V.10(11). uhad200. doi:10.1093/hr/uhad200 100. Yan H, Han J, Jin S et al. Post-polyploidization centromere evolution in cotton. Nat Genet. 2025. V.57(4). P.1021-1030. doi:10.1038/s41588-025-02115-3 101. Yang H, Lian C, Liu J et al. High-quality assembly of the T2T genome for Isodon rubescens f. lushanensis reveals genomic structure variations between 2 typical forms of Isodon rubescens. Gigascience. 2024. V.13. giae075. doi:10.1093/gigascience/giae075 102. Yang H, Wang C, Zhou G et al. A haplotype-resolved gap-free genome assembly provides novel insight into monoterpenoid diversification in Mentha suaveolens 'Variegata'. Hortic Res. 2024. V.11(3). uhae022. doi:10.1093/hr/uhae022 103. Yang J, Peng Y, Yang F, Meng G, Kong W. The telomere-to-telomere genome assembly of the wild mulberry, Morus mongolica. Sci Data. 2025. V.12(1). 694. doi:10.1038/s41597-025-05040-6 104. Yang T, Cai Y, Huang T et al. A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance. Hortic Res. 2024. V.11(7). uhae119. doi:10.1093/hr/uhae119 105. Yang X, Zhang L, Guo X et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol Plant. 2023. V.16(2). P.314-317. doi:10.1016/j.molp.2022.12.010 106. Yang X, Su Y, Huang S et al. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. Hortic Res. 2024. V.11(6). uhae109. doi:10.1093/hr/uhae109 107. Yang X, Zhang L, Guo X et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol Plant. 2023. V.16(2). P.314-317. doi:10.1016/j.molp.2022.12.010 108. Yang Y, Wu Z, Wu Z et al. A near-complete assembly of asparagus bean provides insights into anthocyanin accumulation in pods. Plant Biotechnol J. 2023. V.21(12). P.2473-2489. doi:10.1111/pbi.14142 109. Yisilam G, Zheng E, Li C et al. The chromosome-scale genome of black wolfberry (Lycium ruthenicum) provides useful genomic resources for identifying genes related to anthocyanin biosynthesis and disease resistance. Plant Divers. 2025. V.47(2). P.201-213. doi:10.1016/j.pld.2025.01.001 110. Yun L, Zhang C, Liang T et al. Insights into dammarane-type triterpenoid saponin biosynthesis from the telomere-to-telomere genome of Gynostemma pentaphyllum. Plant Commun. 2024. V.5(8). 100932. doi:10.1016/j.xplc.2024.100932 111. Yue J, Chen Q, Wang Y et al. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis. Hortic Res. 2022. V.10(2). uhac264. doi:10.1093/hr/uhac264 112. Zeng S, Mo C, Xu B et al. T2T genome assemblies of Fallopia multiflora (Heshouwu) and F. multiflora var. angulata. Sci Data. 2024. V.11(1). 1103. doi:10.1038/s41597-024-03943-4 113. Zeng T, He Z, He J et al. The telomere-to-telomere gap-free reference genome of wild blueberry (Vaccinium duclouxii) provides its high soluble sugar and anthocyanin accumulation. Hortic Res. 2023. V.10(11). uhad209. doi:10.1093/hr/uhad209 114. Zhang B, Xue Y, Liu X et al. A near-complete chromosome-level genome assembly of looseleaf lettuce (Lactuca sativa var. crispa). Sci Data. 2024. V.11(1). 961. doi:10.1038/s41597-024-03830-y 115. Zhang C, Xie L, Yu H et al. T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol Plant. 2023. V.16(11). P.1715-1718. doi:10.1016/j.molp.2023.10.003 116. Zhang J, Liu S, Zhao S et al. A telomere-to-telomere haplotype-resolved genome of white-fruited strawberry reveals the complexity of fruit colour formation of cultivated strawberry. Plant Biotechnol J. 2025. V.23(1). P.78-80. doi:10.1111/pbi.14479 117. Zhang K, Du M, Zhang H et al. The haplotype-resolved T2T genome of teinturier cultivar Yan73 reveals the genetic basis of anthocyanin biosynthesis in grapes. Hortic Res. 2023. V.10(11). uhad205. doi:10.1093/hr/uhad205 118. Zhang L, Liang J, Chen H et al. A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. Plant Biotechnol J. 2023. V.21(5). P.1022-1032. doi:10.1111/pbi.14015 119. Zhang S, Yu Z, Sun L et al. T2T reference genome assembly and genome-wide association study reveal the genetic basis of Chinese bayberry fruit quality. Hortic Res. 2024. V.11(3). uhae033. doi:10.1093/hr/uhae033 120. Zhang Y, Fu J, Wang K et al. The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnol J. 2022. V.20(9). P.1642-1644. doi:10.1111/pbi.13880 121. Zhang Y, Zhao M, Tan J et al. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat Genet. 2024. V.56(8). P.1750-1761. doi:10.1038/s41588-024-01823-6 122. Zhao L, Li Z, Jiang S et al. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci. 2024. V.25(22). 11951. doi:10.3390/ijms252211951 123. Zhao W, Wu J, Tian M et al. Characterization of O-methyltransferases in the biosynthesis of phenylphenalenone phytoalexins based on the telomere-to-telomere gapless genome of Musella lasiocarpa. Hortic Res. 2024. V.11(4). uhae042. doi:10.1093/hr/uhae042 124. Zheng H, Wang B, Hua X et al. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. Plant Commun. 2023. V.4(5). 100633. doi:10.1016/j.xplc.2023.100633 125. Zheng Y, Yang D, Yin X et al. The chromosome-level genome assembly of Cananga odorata provides insights into its evolution and terpenoid biosynthesis. New Phytol. 2024. V.243(6). P.2279-2294. doi:10.1111/nph.19977 126. Zhou L, Wu S, Chen Y et al. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat Commun. 2024. V.15(1). 8469. doi:10.1038/s41467-024-52782-9 127. Zhou R, Jenkins JW, Zeng Y et al. Haplotype-resolved genome assembly of Populus tremula × P. alba reveals aspen-specific megabase satellite DNA. Plant J. 2023. V.116(4). P.1003-1017. doi:10.1111/tpj.16454 128. Zhou Y, Xiong J, Shu Z et al. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. Hortic Res. 2023. V.10(4). uhad027. doi:10.1093/hr/uhad027 129. Zhou T, Huang XJ, Cheng YJ et al. Telomere-to-telomere genome and multi-omics analysis of Prunus avium cv. Tieton provides insights into its genomic evolution and flavonoid biosynthesis. Int J Biol Macromol. 2025. V.6. 141809. doi:10.1016/j.ijbiomac.2025.141809 130. Zhou Y, Ye H, Liu E et al. The complexity of structural variations in Brassica rapa revealed by assembly of two complete T2T genomes. Sci Bull (Beijing). 2024. V.69(15). P.2346-2351. doi:10.1016/j.scib.2024.03.030 131. Zhu Y, Tan G, Dong Q et al. A high-quality chromosome-level genome assembly of the traditional Chinese medicinal herb Zanthoxylum nitidum. Sci Data. 2024. V.11(1). 1311. doi:10.1038/s41597-024-04174-3