Pangenomics of plants
01.07.2025
Авторы:
Название:
Pangenomics of plants
Страницы:
42 – 64
The concept of plant pangenomes appeared in 2007, but the preliminary pangenomes of corn and soybeans were created in 2010. First pangenomes of three plant species (Brassica rapa, Glycine soja, and Oryza sativa) were constructed only in 2014. In 2016, several species from Populus and Oryza were used to construct pangenomes for these genera, which formally made those pangenomes super-pangenomes long before the concept of super-pangenomes was described in 2020, already dealing with a taxon having the rank of genus. In the same year (2020), the first Malus pangenome was constructed based on sequenced genomes with phased assembly of haplotypes, and because two more wild apple tree species were involved, that phased pangenome also became a Malus super-pangenome. In 2022, hyper-pangenomes were generated for representatives of genera Musa and Ensete of the Musaceae as well as a Citrus hyper-pangenome using data on genomes of several genera from the Rutaceae. To date, more than 150 pangenomes of all these types have been constructed, and there is a clear growth trend in the number of pangenomes being built. At the same time, it can be predicted that the number of conventional pangenomes will grow at a slower rate than that of phased super-pangenomes because the latter are of the greatest interest for breeding to create varieties of agricultural plants that are high-yielding and resistant to adverse environmental factors. The reason for this interest in plant pangenomes is that reference genomes of individual species, owing to mosaic assembly of determined nucleotide sequences, no longer satisfy the needs of breeders because these data are essentially incomplete information about genomic diversity characteristic of a species/genus or a group of closely related genera of the same family in the form of a gene repertoire consisting of different categories of genes: core, softcore, disposable, and private genes. Although the first two categories mostly ensure the main metabolism, the other two are responsible for secondary metabolism and largely determine the diversity of forms, e.g., by allowing a plant to adapt to its changing environmental conditions. It can be said that agricultural science has already entered the pangenomic era. The most correct selection of different cultivars for breeding should now be based on pangenomic data (including super- and hyper-pangenomes) constructed on the basis of a chromosomal assembly of diploid genomes with phased haplotypes. In fact, genomics, even if it retains its former name, should ideologically turn into pangenomics.
- Achakkagari SR, Bozan I, Camargo-Tavares JC et al. The phased Solanum okadae genome and Petota pangenome analysis of 23 other potato wild relatives and hybrids. Sci Data. 2024. V.11(1). 454. doi:10.1038/s41597-024-03300-5 2. Amas J.C., Bayer P.E., Hong Tan W. et al. Comparative pangenome analyses provide insights into the evolution of Brassica rapa resistance gene analogues (RGAs). Plant Biotechnology Journal. 2023. V. 21(10). P. 2100–2112. doi:10.1111/pbi.14116 3. Barchi L., Rabanus-Wallace M.T., Prohens J. et al. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. Plant Journal. 2021. V. 107(2). P. 579–596. doi:10.1111/tpj.15313 4. Bayer PE, Golicz AA, Scheben A et al. Plant pan-genomes are the new reference. Nat Plants. 2020. V.6(8). P.914-920. doi:10.1038/s41477-020-0733-0 5. Bayer P.E., Hurgobin B., Golicz A.A. et al. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnology Journal. 2017. V. 15(12). P. 1602–1610. doi:10.1111/pbi.12742 6. Bayer P.E., Scheben A., Golicz A.A. et al. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal. 2021. V. 19(12). P. 2488–2500. doi:10.1111/pbi.13674 7. Bayer P.E., Petereit J., Durant É. et al. Wheat Panache: A pangenome graph database representing presence-absence variation across sixteen bread wheat genomes. Plant Genome. 2022. V. 15(3). e20221. doi:10.1002/tpg2.20221 8. Bayer P.E., Valliyodan B., Hu H. et al. Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome. 2022a. V. 15(1). e20109. doi:10.1002/tpg2.20109 9. Baymiev Al.Kh., Chemeris D.A., Sakhabutdinova A.R. et al. In higher plants as an example, one can see that the era of sequencing of their diploid genomes is coming. Biomics. 2025. V.17(1). P. 17 – 41. DOI:10.31301/2221-6197.bmcs.2025-3 10. Bozan I., Achakkagari S.R., Anglin N.L et al. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proc Natl Acad Sci USA. 2023. V. 120(31). e2211117120. doi:10.1073/pnas.2211117120 11. Cai X., Chang L., Zhang T. et al. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology. 2021. V. 22(1). 166. doi:10.1186/s13059-021-02383-2 12. Cannon E.K., Portwood J.L., Hayford R.K. et al. Enhanced pan-genomic resources at the maize genetics and genomics database. Genetics. 2024. V. 227(1). iyae036. doi:10.1093/genetics/iyae036 13. Cao J., Schneeberger K., Ossowski S. et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics. 2011. V. 43(10). P. 956–963. doi:10.1038/ng.911 14. Chandra G, Gibney D, Jain C. Haplotype-aware sequence alignment to pangenome graphs. Genome Res. 2024. V.34(9). P.1265-1275. doi:10.1101/gr.279143.124 15. Chen J., Liu Y., Liu M. et al. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nature Genetics. 2023. V. 55(12). P. 2243–2254. doi:10.1038/s41588-023-01571-z 16. Chen S., Wang P., Kong W. et al. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nature Plants. 2023a. V. 9(12). P. 1986–1999. doi:10.1038/s41477-023-01565-z 17. Cheng L., Wang N., Bao Z. et al. Leveraging a phased pangenome for haplotype design of hybrid potato. Nature. 2025. V. 22. doi:10.1038/s41586-024-08476-9 18. Cochetel N, Minio A, Guarracino Anet al. A super-pangenome of the North American wild grape species. Genome Biol. 2023. V.24(1). 290. doi:10.1186/s13059-023-03133-2 19. Cortinovis G., Vincenzi L., Anderson R. et al. Adaptive gene loss in the common bean pan-genome during range expansion and domestication. Nature Communications. 2024. V. 15(1). 6698. doi:10.1038/s41467-024-51032-2. 20. Cui X., Hu M., Yao S. et al. BnaOmics: A comprehensive platform combining pan-genome and multi-omics data from Brassica napus. Plant Communications. 2023. V. 4(5). 100609. doi:10.1016/j.xplc.2023.100609 21. Della Coletta R, Qiu Y, Ou S et al. How the pan-genome is changing crop genomics and improvement. Genome Biol. 2021. V.22(1). 3. doi:10.1186/s13059-020-02224-8 22. Ehrlich GD, Hu FZ, Post JC. Role for Biofilms in Infectious Disease. In: Ghannoum M, O’Toole GA, editors. Microbial Biofilms. Washington, DC: ASM Press; 2004. P. 332–358. 23. Eisenstein M. Every base everywhere all at once: pangenomics comes of age. Nature. 2023. V.616(7957). P.618-620. doi:10.1038/d41586-023-01300-w 24. Fang Y., Xiao X., Lin J. et al. Pan-genome and phylogenomic analyses highlight Hevea species delineation and rubber trait evolution. Nature Communications. 2024. V. 15(1). 7232. doi:10.1038/s41467-024-51031-3 25. Gao L., Gonda I., Sun H. et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics. 2019. V. 51(6). P. 1044–1051. doi:10.1038/s41588-019-0410-2 26. Gao S., Wu J., Stiller J. et al. Identifying barley pan-genome sequence anchors using genetic mapping and machine learning. Theoretical and Applied Genetics. 2020. V. 133(9). P. 2535–2544. doi:10.1007/s00122-020-03615-y 27. Garg G., Kamphuis L.G., Bayer P.E. et al. A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. Plant Journal. 2022. V. 111(5). P. 1252–1266. doi:10.1111/tpj.15885 28. Golicz AA, Batley J, Edwards D. Towards plant pangenomics. Plant Biotechnol J. 2016. V.14(4). P.1099-1105. doi:10.1111/pbi.12499 29. Golicz A.A., Bayer P.E., Barker G.C. et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications. 2016a. V. 7. 13390. doi:10.1038/ncomms13390 30. Gordon S.P., Contreras-Moreira B., Woods D.P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications. 2017. V. 8(1). 2184. doi:10.1038/s41467-017-02292-8 31. Gui S., Wei W., Jiang C. et al. A pan-Zea genome map for enhancing maize improvement. Genome Biology. 2022. V. 23(1). 178. doi:10.1186/s13059-022-02742-7 32. Guo L, Wang X, Ayhan DH et al. Super pangenome of Vitis empowers identification of downy mildew resistance genes for grapevine improvement. Nat Genet. 2025. V.57(3). P.741-753. doi:10.1038/s41588-025-02111-7 33. Guo M., Bi G., Wang H. et al. Genomes of autotetraploid wild and cultivated Ziziphus mauritiana reveal polyploid evolution and crop domestication. Plant Physiology. 2024. V. 196(4). P. 2701–2720. doi:10.1093/plphys/kiae512 34. Guo M., Lian Q., Mei Y. et al. Analyzes of pan-genome and resequencing atlas unveil the genetic basis of jujube domestication. Nature Communications. 2024a. V. 15. 9320. doi:10.1038/s41467-024-53718-z 35. Guo N., Wang S., Wang T. et al. A graph-based pan-genome of Brassica oleracea provides new insights into its domestication and morphotype diversification. Plant Communications. 2024b. V. 5(2). 100791. doi:10.1016/j.xplc.2023.100791 36. Guo S., Zhao S., Sun H. et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics. 2019. V.51(11). P. 1616–1623. doi:10.1038/s41588-019-0518-4 37. Haberer G., Kamal N., Bauer E. et al. European maize genomes highlight intraspecies variation in repeat and gene content. Nature Genetics. 2020. V.52(9). P. 950–957. doi:10.1038/s41588-020-0671-9 38. Hameed A, Poznanski P, Nadolska-Orczyk A, Orczyk W. Graph Pangenomes Track Genetic Variants for Crop Improvement. Int J Mol Sci. 2022. V.23(21). 13420. doi:10.3390/ijms232113420 39. Hamilton J.P., Li C., Buell C.R. The rice genome annotation project: an updated database for mining the rice genome. Nucleic Acids Reserch. 2025. V.53(D1). P. D1614–D1622. doi:10.1093/nar/gkae1061 40. Hammond JA, Gordon EA, Socarras KM et al. Beyond the pan-genome: current perspectives on the functional and practical outcomes of the distributed genome hypothesis. Biochem Soc Trans. 2020. V.48(6). P.2437-2455. doi:10.1042/BST20190713 41. Hardigan M.A., Crisovan E., Hamilton J.P. et al. Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum. Plant Cell. 2016. V. 28(2). P. 388–405. doi:10.1105/tpc.15.00538 42. He Q., Tang S., Zhi H. et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nature Genetics. 2023. V. 55(7). P. 1232–1242. doi:10.1038/s41588-023-01423-w 43. He W, Li X, Qian Q, Shang L. The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. Plant Commun. 2025. V.6(2). 101230. doi:10.1016/j.xplc.2024.101230 44. He X., Qi Z., Liu Z. et al. Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biology. 2024. V. 22(1). 92. doi:10.1186/s12915-024-01893-2 45. He Z., Ji R., Havlickova L. et al. Genome structural evolution in Brassica crops. Natute Plants. 2021. V. 7(6). P. 757–765. doi:10.1038/s41477-021-00928-8 46. Hirsch C.N., Foerster J.M., Johnson J.M. et al. Insights into the maize pan-genome and pan-transcriptome. Plant Cell. 2014. V. 26(1). P. 121–135. doi:10.1105/tpc.113.1199821 47. Hoopes G., Meng X., Hamilton J.P. et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant. 2022. V. 15(3). P. 520–536. doi:10.1016/j.molp.2022.01.003 48. Hou Y, Gan J, Fan Z et al. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations. Nat Commun. 2024. V.15(1). 8085. doi:10.1038/s41467-024-52376-5 49. Hu G., Cheng L., Cheng Y. et al. Pan-genome analysis of three main Chinese chestnut varieties. Frontiers in Plant Science. 2022. V. 13. 916550. doi:10.3389/fpls.2022.916550 50. Hu H, Li R, Zhao J et al. Technological Development and Advances for Constructing and Analyzing Plant Pangenomes. Genome Biol Evol. 2024. V.16(4). evae081. doi:10.1093/gbe/evae081 51. Hu H, Zhao J, Thomas WJW et al. The role of pangenomics in orphan crop improvement. Nat Commun. 2025. V.16(1). 118. doi:10.1038/s41467-024-55260-4 52. Huang Y., He J., Xu Y. et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nature Genetics. 2023. V. 55(11). P. 1964–1975. doi:10.1038/s41588-023-01516-6 53. Hübner S., Bercovich N., Todesco M. et al. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants. 2019. V. 5(1). P. 54–62. doi:10.1038/s41477-018-0329-0 54. Huff M, Hulse-Kemp AM, Scheffler BE et al. Long-read, chromosome-scale assembly of Vitis rotundifolia cv. Carlos and its unique resistance to Xylella fastidiosa subsp. fastidiosa. BMC Genomics. 2023. V.24(1). 409. doi:10.1186/s12864-023-09514-y 55. Hufnagel B., Soriano A., Taylor J. et al. Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnology Journal. 2021. V. 19(12). P. 2532–2543. doi:10.1111/pbi.13678 56. Hufford M.B., Seetharam A.S., Woodhouse M.R. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 2021. V. 373(6555). P. 655–662. doi:10.1126/science.abg5289 57. Hurgobin B., Golicz A.A., Bayer P.E. et al. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnology Journal. 2018. V. 16(7). P. 1265–1274. doi:10.1111/pbi.12867 58. Jaggi K.E., Krak K., Štorchová H. et al. A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium. Plant Genome. 2025. V. 18(1). e70010. doi:10.1002/tpg2.70010 59. Jayakodi M., Lu Q., Pidon H. et al. Structural variation in the pangenome of wild and domesticated barley. Nature. 2024. V. 636(8043). P. 654–662. doi:10.1038/s41586-024-08187-1 60. Jayakodi M., Padmarasu S., Haberer G. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature. 2020. V. 588(7837). P. 284-289. doi:10.1038/s41586-020-2947-8 61. Ji G., Long Y., Cai G. et al. A new chromosome-scale genome of wild Brassica oleracea provides insights into the domestication of Brassica crops. Journal of Experimental Botany. 2024. V.75(10). P. 2882–2899. doi:10.1093/jxb/erae079 62. Jin S., Han Z., Hu Y. et al. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Molecular Plant. 2023. V. 16(4). P. 678–693. doi:10.1016/j.molp.2023.02.004 63. Jonkheer EM, de Ridder D, van der Lee TAJ et al. Exploring intra- and intergenomic variation in haplotype-resolved pangenomes. Plant Biotechnol J. 2025. V.23(3). P.874-886. doi:10.1111/pbi.14545 64. Kang M., Wu H., Liu H. et al. The pan-genome and local adaptation of Arabidopsis thaliana. Nature Communications. 2023. V. 14. 6259. doi:10.1038/s41467-023-42029-4 65. Karetnikov D.I., Vasiliev G.V., Toshchakov S.V. et al. Analysis of genome structure and its variations in potato cultivars grown in Russia. International Journal of Molecular Sciences. 2023. V. 24(6). 5713. doi:10.3390/ijms24065713 66. Khan A.W., Garg V., Roorkiwal M., et al. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 2020. V.25(2). P.148-158. doi:10.1016/j.tplants.2019.10.012 67. Khan A.W., Garg V., Sun S. et al. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea. Nature Genetics. 2024. V. 56(6). P. 1225–1234. doi:10.1038/s41588-024-01760-4 68. Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics. 2024. V.25(1). 1022. doi:10.1186/s12864-024-10931-w 69. Lai J., Li R., Xu X. et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics. 2010. V. 42(11). P. 1027–1030. doi:10.1038/ng.684 70. Lam H.M., Xu X., Liu X. et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics. 2010. V. 42(12). P. 1053–1059. doi:10.1038/ng.715 71. Lei L, Goltsman E, Goodstein D et al. Plant Pan-Genomics Comes of Age. Annu Rev Plant Biol. 2021. V.72. P.411-435. doi:10.1146/annurev-arplant-080720-105454 72. Li J., Liu Z., You C. et al. Convergence and divergence of diploid and tetraploid cotton genomes. Nature Genetics. 2024. V. 56(11). P. 2562–2573. doi:10.1038/s41588-024-01964-8 73. Li J., Yuan D.., Wang P. et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biology. 2021. V. 22(1). 119. doi:10.1186/s13059-021-02351-w 74. Li H., Wang S., Chai S. et al. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications. 2022. V. 13(1). 682. doi:10.1038/s41467-022-28362-0 75. Li N., He Q., Wang J. et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics. 2023. V. 55(5). P. 852–860. doi:10.1038/s41588-023-01340-y 76. Li Q, Qiao X, Li L et al. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. Plant Commun. 2024a. V.5(10). 101000. doi:10.1016/j.xplc.2024.101000 77. Li Y.H., Zhou G., Ma J. et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology. 2014. V. 32(10). P. 1045–1052. doi:10.1038/nbt.2979 78. Li X., Wang Y., Cai C. et al. Large-scale gene expression alterations introduced by structural variation drive morphotype diversification in Brassica oleracea. Nature Genetics. 2024b. V. 56(3). P. 517–529. doi:10.1038/s41588-024-01655-4 79. Liang Q., Muñoz-Amatriaín M., Shu S. et al. A view of the pan-genome of domesticated Cowpea (Vigna unguiculata [L.] Walp.). Plant Genome. 2024. V. 17(1). e20319. doi:10.1002/tpg2.20319 80. Lin K., Zhang N., Severing E.I. et al. Beyond genomic variation--comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics. 2014. V. 15(1). 250. doi:10.1186/1471-2164-15-250 81. Liu C., Peng P., Li W. et al. Deciphering variation of 239 elite japonica rice genomes for whole genome sequences-enabled breeding. Genomics. 2021. V. 113(5). P. 3083–3091. doi:10.1016/j.ygeno.2021.07.002 82. Liu C., Wang Y., Peng J. et al. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Communications. 2022. V. 3(6). 100352. doi:10.1016/j.xplc.2022.100352 83. Liu H., Wang X., Liu S. et al. Citrus Pan-Genome to Breeding Database (CPBD): A comprehensive genome database for citrus breeding. Molecular Plant. 2022a. V. 15(10). P. 1503–1505. doi:10.1016/j.molp.2022.08.006 84. Liu J.N., Yan L., Chai Z. et al. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. Plant Communications. 2025. V. 6(1). 101137. doi:10.1016/j.xplc.2024.101137 85. Liu Y., Du H., Li P. et al. Pan-genome of wild and cultivated soybeans. Cell. 2020. V. 182(1). P. 162–176.e13. doi:10.1016/j.cell.2020.05.023 86. Liu Z., Wang N., Su Y. et al. Grapevine pangenome facilitates trait genetics and genomic breeding. Nature Genetics. 2024. V. 56(12). P. 2804–2814. doi:10.1038/s41588-024-01967-5 87. Luo Y, Liu Z, Jin Z et al. Phased T2T genome assemblies facilitate the mining of disease-resistance genes in Vitis davidii. Hortic Res. 2024. V.12(2). uhae306. doi:10.1093/hr/uhae306 88. Long W., He Q., Wang Y. et al. Genome evolution and diversity of wild and cultivated rice species. Nature Communications. 2024. V. 15(1). 9994. doi:10.1038/s41467-024-54427-3 89. Lovell JT, Bentley NB, Bhattarai G et al. Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nat Commun. 2021. V.12(1). 4125. doi:10.1038/s41467-021-24328-w 90. Lu F., Romay M.C., Glaubitz J.C. et al. High-resolution genetic mapping of maize pan-genome sequence anchors. Nature Communications. 2015. V.6. 6914. doi:10.1038/ncomms7914 91. Lv Y, Liu C, Li X et al. A centromere map based on super pan-genome highlights the structure and function of rice centromeres. J Integr Plant Biol. 2024. V.66(2). P.196-207. doi:10.1111/jipb.13607 92. Lyu X., Xia Y., Wang C. et al. Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops. Plant Physiology. 2023. V. 193(2). P. 1330–1348. doi:10.1093/plphys/kiad405 93. MacNish T.R., Al-Mamun H.A., Bayer P.E. et al. Brassica Panache: A multi-species graph pangenome representing presence absence variation across forty-one Brassica genomes. Plant Genome. 2025. V. 18(1). e20535. doi:10.1002/tpg2.20535 94. Miao H., Wang L., Qu L. et al. Genomic evolution and insights into agronomic trait innovations of Sesamum species. Plant Communications. 2024. V. 8. 5(1). 100729. doi:10.1016/j.xplc.2023.100729 95. Michael TP, VanBuren R. Building near-complete plant genomes. Curr Opin Plant Biol. 2020. V.54. P.26-33. doi:10.1016/j.pbi.2019.12.009 96. Monat C., Pera B., Ndjiondjop M.N. et al. De novo assemblies of three Oryza glaberrima accessions provide first insights about pan-genome of african rices. Genome Biology Evolution. 2017. V. 9(1). P. 1–6. doi:10.1093/gbe/evw253 97. Montenegro J.D., Golicz A.A., Bayer P.E. et al. The pangenome of hexaploid bread wheat. Plant Journal. 2017. V. 90(5). P. 1007–1013. doi:10.1111/tpj.13515 98. Morgante M., De Paoli E., Radovic S. Transposable elements and the plant pan-genomes. Current Opinion in Plant Biology. 2007. V. 10(2). P. 149–155. doi:10.1016/j.pbi.2007.02.001 99. Naithani S, Deng CH, Sahu SK, Jaiswal P. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes. Biomolecules. 2023. V.13(9). 1403. doi:10.3390/biom13091403 100. Nawae W., Naktang C., Charoensri S. et al. Resequencing of durian genomes reveals large genetic variations among different cultivars. Frontiers in Plant Science. 2023. V. 14. 1137077. doi:10.3389/fpls.2023 101. Niu Y., Liu Q., He Z. et al. A Brassica carinata pan-genome platform for Brassica crop improvement. Plant Communications. 2024. V. 5(1). 100725. doi:10.1016/j.xplc.2023.100725 102. Oren E., Dafna A., Tzuri G. et al. Pan-genome and multi-parental framework for high-resolution trait dissection in melon (Cucumis melo). Plant Journal. 2022. V. 112(6). P. 1525–1542. doi:10.1111/tpj.16021 103. Ou L., Li D., Lv J. et al. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses. New Phytologist. 2018. V. 220(2). 360–363. doi:10.1111/nph.15413 104. Petereit J, Bayer PE, Thomas WJW et al. Pangenomics and Crop Genome Adaptation in a Changing Climate. Plants (Basel). 2022. V.11(15). 1949. doi:10.3390/plants11151949 105. Pinosio S., Giacomello S., Faivre-Rampant P. et al. Characterization of the poplar pan-genome by genome-wide identification of structural variation. Molecular Biology Evolution. 2016. V. 33(10). P. 2706–2719. doi:10.1093/molbev/msw161 106. Portwood J.L. 2nd, Woodhouse M.R., Cannon E.K. et al. MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Reserch. 2019. V. 47(D1). D1146–D1154. doi:10.1093/nar/gky1046 107. Qiao Q., Edger P.P., Xue L. et al. Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proc Natl Acad Sci USA. 2021. V. 118(45). e2105431118. doi:10.1073/pnas.2105431118 108. Qin P., Lu H., Du H. et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell. 2021. V. 184(13). P. 3542–3558.e16. doi:10.1016/j.cell.2021.04.046 109. Raza A, Bohra A, Garg V, Varshney RK. Back to wild relatives for future breeding through super-pangenome. Mol Plant. 2023. V.16(9). P.1363-1365. doi:10.1016/j.molp.2023.08.005 110. Rijzaani H., Bayer P.E., Rouard M. et al. The pangenome of banana highlights differences between genera and genomes. Plant Genome. 2022. 15(1):e20100. doi:10.1002/tpg2.20100 111. Ruperao P, Rangan P, Shah T et al. Developing pangenomes for large and complex plant genomes and their representation formats. J Adv Res. 2025. V.S2090-1232(25)00071-2. doi:10.1016/j.jare.2025.01.052 112. Ruperao P., Thirunavukkarasu N., Gandham P. et al. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Frontiers in Plant Science. 2021. V. 12. 666342. doi:10.3389/fpls.2021.666342 113. Sarashetti P., Lipovac J., Tomas F. et al. Evaluating data requirements for high-quality haplotype-resolved genomes for creating robust pangenome references. Genome Biology. 2024. V. 25(1). 312. doi:10.1186/s13059-024-03452-y 114. Schatz M.C., Maron L.G., Stein J.C. et al. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology. 2014. V. 15(11). 506. doi:10.1186/PREACCEPT-2784872521277375 115. Schneeberger K., Ossowski S., Ott F. et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA. 2011. V. 108(25). 10249–10254. doi:10.1073/pnas.1107739108 116. She H, Liu Z, Xu Z et al. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. Plant Biotechnol J. 2024. V.22(11). P.3102-3117. doi:10.1111/pbi.14433 117. Shi J, Tian Z, Lai J, Huang X. Plant pan-genomics and its applications. Mol Plant. 2023. V.16(1). P.168-186. doi:10.1016/j.molp.2022.12.009 118. Shi T., Zhang X., Hou Y. et al. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Molecular Plant. 2024. V. 17(5). P. 725–746. doi:10.1016/j.molp.2024.03.009 119. Shang L., Li X., He H. et al. A super pan-genomic landscape of rice. Cell Reserch. 2022. V. 32(10). P. 878–896. doi:10.1038/s41422-022-00685-z 120. Shen J-S., Lan L., Kan S-L. et al. Haplotype-resolved genome for Rhododendron × pulchrum and the expression analysis of heat shock genes. Journal of Systematics and Evolution. 2024. V. 62(3). P. 489–504. doi:10.1111/jse.13007 121. Sigaux F. Genome du cancer ou de la construction des cartes d’identite moleculaire des tumeurs. Bulletin de l'Académie Nationale de Médecine. 2000. V.184(7). P.1441–1449, including discussion 1448–1449. [Cancer genome or the development of molecular portraits of tumors] (In French) 122. Sinha P., Singh V.K., Saxena R.K. et al. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnology Journal. 2020. V. 18(12). P. 2482–2490. doi:10.1111/pbi.13422 123. Sivabharathi R.C., Rajagopalan V.R., Suresh R. et al. Haplotype-based breeding: A new insight in crop improvement. Plant Science. 2024. V. 346. 112129. doi:10.1016/j.plantsci.2024.112129 124. Song J.M., Guan Z., Hu J. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants. 2020. V. 6(1). P. 34–45. doi:10.1038/s41477-019-0577-7 125. Song J.M., Liu D.X., Xie W.Z. et al. BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnology Journal. 2021. V. 19(3). P. 412–414. doi:10.1111/pbi.13491 126. Song Y., Han S., Wang M. et al. Pangenome identification and analysis of terpene synthase gene family members in Gossypium. International Journal of Molecular Sciences. 2024. V. 25(17). 9677. doi:10.3390/ijms25179677 127. Su Y, Yang X, Wang Y et al. Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication. Plant Physiol. 2024. V.195(4). P.2799-2814. doi:10.1093/plphys/kiae258 128. Sun C., Hu Z., Zheng T. et al. RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Reserch. 2017. V. 45(2). P. 597–605. doi:10.1093/nar/gkw958 129. Sun S., Zhou Y., Chen J. et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nature Genetics. 2018. V. 50(9). P. 1289–1295. doi:10.1038/s41588-018-0182-0 130. Sun X, Jiao C, Schwaninger H et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 2020. V.52(12). P.1423-1432. doi:10.1038/s41588-020-00723-9 131. Sun Y., Wang J., Li Y. et al. Pan-genome analysis reveals the abundant gene presence/absence variations among different varieties of melon and their influence on traits. Frontiers in Plant Science. 2022. V. 13. 835496. doi:10.3389/fpls.2022.835496 132. Sun Y., Kou D.R., Li Y. et al. Pan-genome of Citrullus genus highlights the extent of presence/absence variation during domestication and selection. BMC Genomics. 2023. V. 24(1). 332. doi:10.1186/s12864-023-09443-w 133. Tahir U., Qamar M., Fatima K. et al. Comparative genomics profiling of Citrus species reveals the diversity and disease responsiveness of the GLP pangenes family. BMC Plant Biology. 2025. V. 25(1). 388. doi:10.1186/s12870-025-06397-x 134. Tan W, Zhou P, Huang X et al. Haplotype-resolved genome of Prunus zhengheensis provides insight into its evolution and low temperature adaptation in apricot. Hortic Res. 2024. V.11(4). uhae103. doi:10.1093/hr/uhae103 135. Tang D., Jia Y., Zhang J. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022. V. 606. P. 535–541. doi:10.1038/s41586-022-04822-x 136. Tao Y., Luo H., Xu J. et al. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants. 2021. V. 7(6). P. 766–773. doi:10.1038/s41477-021-00925-x 137. Tariq A., Meng M., Jiang X. et al. In-depth exploration of the genomic diversity in tea varieties based on a newly constructed pangenome of Camellia sinensis. Plant Journal. 2024. V. 119(4). P. 2096-2115. doi:10.1111/tpj.16874 138. Tay Fernandez CG, Nestor BJ, Danilevicz MF et al. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Int J Mol Sci. 2022. V.23(4). 2276. doi:10.3390/ijms23042276 139. Tets V.V. Pangenom. Tsitilogiya. 2003. V.45(5). P.526-531. (In Russian) 140. Tettelin H., Masignani V., Cieslewicz M.J. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci USA. 2005. V.102(39). P.13950-13955. doi:10.1073/pnas.0506758102 141. Torkamaneh D., Lemay M.A., Belzile F. The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnology Journal. 2021. V. 19(9). P. 1852–1862. doi:10.1111/pbi.13600 142. van Workum D.M., Mehrem S.L., Snoek B.L. et al. Lactuca super-pangenome reduces bias towards reference genes in lettuce research. BMC Plant Biology. 2024. V. 24(1). 1019. doi:10.1186/s12870-024-05712-2 143. Varshney R.K., Graner A., Sorrells M.E. Genomics-assisted breeding for crop improvement. Trends in Plant Science. 2005. V. 10(12). P. 621–630. doi:10.1016/j.tplants.2005.10.004 144. Varshney R.K., Roorkiwal M., Sun S. et al. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature. 2021. V. 599(7886). P. 622–627. doi:10.1038/s41586-021-04066-1. 145. Varshney R.K., Sinha P., Singh V.K. et al. 5Gs for crop genetic improvement. Current Opinion in Plant Biology. 2020. V. 56. P. 190–196. doi:10.1016/j.pbi.2019.12.004 146. Vaughn J.N., Branham S.E., Abernathy B. et al. Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon. Nature Communications. 2022. V. 13(1). 7897. doi:10.1038/s41467-022-35621-7 147. Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol. 2015. V.23. P.148-154. doi:10.1016/j.mib.2014.11.016 148. Voelker W.G., Krishnan K., Chougule K. et al. Ten new high-quality genome assemblies for diverse bioenergy sorghum genotypes. Frontiers in Plant Science. 2023. V. 13. 1040909. doi:10.3389/fpls.2022.1040909 149. Wang M., Li J., Qi Z. et al. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nature Genetics. 2022. V. 54(12). P. 1959–1971. doi:10.1038/s41588-022-01237-2 150. Wang J., Yang W., Zhang S. et al. A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biology. 2023. 24(1). 19. doi:10.1186/s13059-023-02861-9 151. Wang T., Duan S., Xu C. et al. Pan-genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits. Nature Communications. 2023a. V. 14(1). 7377. doi:10.1038/s41467-023-43270-7 152. Wang W., Mauleon R., Hu Z. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 2018. 557(7703). P. 43–49. doi:10.1038/s41586-018-0063-9 153. Wang X, Zhou P, Hu X et al. T2T genome, pan-genome analysis, and heat stress response genes in Rhododendron species. Imeta. 2025. V.4(2). e70010. doi:10.1002/imt2.70010 154. Wang Y., Li P., Zhu Y. et al. Graph-based pangenome of Actinidia chinensis reveals structural variations mediating fruit degreening. Advanced Science (Weinh). 2024. V. 11(28). e2400322. doi:10.1002/advs.202400322 155. Woodhouse M.R., Cannon E.K., Portwood J.L. 2nd et al. A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biology. 2021. V. 21(1). 385. doi:10.1186/s12870-021-03173-5 156. Woodhouse M.R., Cannon E.K., Portwood J.L. 2nd et al. Tools and resources at the maize genetics and genomics database (MaizeGDB). Cold Spring Harbor Protocols. 2025. V. 2025(1). pdb.over108430. doi:10.1101/pdb.over108430 157. Wu D., Xie L., Sun Y. et al. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biology. 2023. V. 24(1). 179. doi:10.1186/s13059-023-03017-5 158. Wu J., Xu X.D., Liu L. et al. A Chromosome level genome assembly of a winter turnip rape (Brassica rapa L.) to explore the genetic basis of cold tolerance. Frontiers in Plant Science. 2022. V. 13. 936958. doi:10.3389/fpls.2022.936958 159. Wu S., Sun H., Gao L. et al. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnology Journal. 2023a. V. 21(10). P. 1926–1928. doi:10.1111/pbi.14120 160. Yan H., Sun M., Zhang Z. et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics. 2023. V. 55(3). P. 507–518. doi:10.1038/s41588-023-01302-4 161. Yang T., Liu R., Luo Y. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics. 2022. V. 54(10). P. 1553–1563. doi:10.1038/s41588-022-01172-2 162. Yano R., Li F., Hiraga S. et al. The genomic landscape of gene-level structural variations in Japanese and global soybean Glycine max cultivars. Nature Genetics. 2025. V. 57. P. 973–985. doi:10.1038/s41588-025-02113-5 163. Yu J., Golicz A.A., Lu K. et al. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnology Journal. 2019. V. 17(5). P. 881–892. doi:10.1111/pbi.13022 164. Yu X., Qu M., Wu P. et al. Super pan-genome reveals extensive genomic variations associated with phenotypic divergence in Actinidia. Molecular Horticulture. 2025. V. 5(1). 4. doi:10.1186/s43897-024-00123-1 165. Yu Z., Chen Y., Zhou Y. et al. Rice gene index: A comprehensive pan-genome database for comparative and functional genomics of Asian rice. Molecular Plant. 2023. V. 16(5). P. 798–801. doi:10.1016/j.molp.2023.03.012 166. Zhang B., Zhu W., Diao S. et al. The poplar pangenome provides insights into the evolutionary history of the genus. Communications Biology. 2019. V. 2. 215. doi:10.1038/s42003-019-0474-7 167. Zhang F., Xue H., Dong X. et al. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Reserch. 2022. V. 32(5). P. 853–863. doi:10.1101/gr.276015.121 168. Zhang L., Liu Y., Huang Y. et al. Solanaceae pan-genomes reveal extensive fractionation and functional innovation of duplicated genes. Plant Communications. 2025. V. 6(3). 101231. doi:10.1016/j.xplc.2024.101231 169. Zhang R., Dai C., Gong R. et al. Gapless genome assembly and pan-genome of Brassica juncea provide insights into seed quality improvement and environmental adaptation. Plant Communications. 2025a. 101298. doi:10.1016/j.xplc.2025.101298 170. Zhang X., Liu T., Wang J. et al. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Molecular Plant. 2021. V. 14(12). P. 2032–2055. doi:10.1016/j.molp.2021.08.005 171. Zhang X., Chen Y., Wang L. et al. Pangenome of water caltrop reveals structural variations and asymmetric subgenome divergence after allopolyploidization. Horticulture Research. 2023. V. 10(11). uhad203. doi:10.1093/hr/uhad203 172. Zhang Y., Zhao M., Tan J. et al. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nature Genetics. 2024. V. 56(8). P. 1750–1761. doi:10.1038/s41588-024-01823-6 173. Zhao J., Bayer P.E., Ruperao P. et al. Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnology Journal. 2020. V. 18(9). P. 1946–1954. doi:10.1111/pbi.13354 174. Zhao Q., Feng Q., Lu H. et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics. 2018. V. 50. P. 278–284. doi:10.1038/s41588-018-0041-z 175. Zhou L, Wu S, Chen Y et al. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat Commun. 2024. V.15(1). 8469. doi:10.1038/s41467-024-52782-9 176. Zhou P., Silverstein K.A., Ramaraj T. et al. Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genomics. 2017. V. 18(1). 261. doi:10.1186/s12864-017-3654-1 177. Zhou Y., Chebotarov D., Kudrna D. et al. A platinum standard pan-genome resource that represents the population structure of Asian rice. Scientific Data. 2020. V. 7(1). 113. doi:10.1038/s41597-020-0438-2 178. Zhou Y., Yu Z., Chebotarov D. et al. Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice. Nature Communications. 2023. V. 14(1). 1567. doi:10.1038/s41467-023-37004-y 179. Zhou Y., Zhang Z., Bao Z. et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature. 2022. V. 606(7914). P. 527–534. doi:10.1038/s41586-022-04808-9 180. Zhu X., Yang R., Liang Q. et al. Graph-based pangenome provides insights into structural variations and genetic basis of metabolic traits in potato. Molecular Plant. 2025. S1674-2052(25)00038-3. doi:10.1016/j.molp.2025.01.017 181. Zhuang Y., Wang X., Li X. et al. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nature Plants. 2022. V. 8(3). P. 233-244. doi:10.1038/s41477-022-01102-4