Гаплодиплоидность и пол-определяющий каскад генов у перепончатокрылых насекомых
30.08.2019
Авторы:
Название:
Гаплодиплоидность и пол-определяющий каскад генов у перепончатокрылых насекомых
Страницы:
108 – 119
В данном обзоре рассмотрены существующие и предполагаемые генетические системы, характерные для перепончатокрылых насекомых, а также показано, как устроен и функционирует пол-определяющий каскад у отдельных видов. Большинство перепончатокрылых насекомых являются гаплодиплоидными – самки имеют диплоидный набор хромосом, а самцы гаплоидный. Однако пол–определяющие механизмы внутри этого отряда значительно варьируют не только в отдельных семействах, но даже в пределах одного рода. Общей чертой для них является наличие иерархичного пол-определяющего каскада, где продукты одних генов регулируют пол-специфичный сплайсинг других. Регуляция экспрессии осуществляется как при помощи альтернативного сплайсинга, так и положительных авторегуляторных петель.
- Adachi– Hagimori T., Miura K., Stouthamer R. A new cytogenetic mechanism for bacterial endosymbiont–induced parthenogenesis in Hymenoptera. Proceedings Biological Sciences. 2008. V. 275 (1652). P. 2667–2673. doi:10.1098/rspb.2008.0792 2. Aguiar A.P., Deans A.R., Engel M.S., Forshage M., Huber J.T., Jennings J.T., Johnson N.F., Lelej A.S., Longino J.T., Lohrmann V., Mikо I., Ohl M., Rasmussen C., Taeger A., Sick Ki Yu D. Order hymenoptera. Zootaxa. 2013. V. 3703 (1). doi:10.11646/zootaxa.3703.1.12 3. Aldrich, J.C. et al. Genome silencing and elimination: insights from a “Selfish” B chromosome / J.C. Aldrich, P.M. Ferree. Frontiers in Genetics. 2017. V. 8 (50). doi:10.3389/fgene.2017.00050 4. Baudry E., Kryger P., Allsopp M., Koeniger N., Vautrin D., Mougel F., Cornuet J.–M., Solignac M. Whole–genome scan in thelytokous–laying workers of the cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half–tetrad analysis. Genetics. 2004. V. 167 (1). Р.243–252. doi:10.1534/genetics.167.1.243 5. Beukeboom L.W., Kamping A., van de Zande L. Sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea): a critical consideration of models and evidence. Semin Cell Dev Biol. 2007. V. 18 (3). P. 3718. 6. Beye M., Moritz R.F.A., Epplen C. Sex linkage in the honeybee Apis mellifera detected by multilocus DNA fingerprinting. Naturwissenschaften. 1994. V. 81. Р.460–462. doi:10.1007/BF01136650 7. Beye M., Moritz R.F.A. Mapping the sex locus of the honeybee (Apis mellifera). Naturwissenschaften. 1996. № 83. Р. 424 – 426. 8. Beye M., Hunt G.J., Page R.E., Fondrk M.K., Grohmann L., Moritz R.F. Unusually high recombination rate detected in the sex locus region of the honey bee (Apis mellifera). Genetics. 1999. V. 153. P.1701–1708. 9. Beye M., Hasselmann M., Fondrk M., Page R.E., Omholt S.W. The gene csd is the primary signal for sexual development in the Honeybee and encodes an SR–type protein. Cell. 2003. V. 114. P. 419–429. doi:10.1016/S0092–8674(03)00606–8 10. Beye M., Hasselmann M., Vekemans X., Fondrk M.K., Page R.E.Jr. Gradual molecular evolution of a sex determination switch through incomplete penetrance of femaleness. Current Biology. 2013. V. 23. P.2559–2564. doi:10.1016/j.cub.2013.10.070 11. Biewer M., Lechner S., Hasselmann M. Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea. Heredity (Edinb). 2016. V. 116 (1). P. 12-22. doi:10.1038/hdy.2015.60 12. Biewer M., Schlesinger F., Hasselmann M. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species. Frontiers in Genetics. 2015. V.6. Р. 11. doi:10.3389/fgene.2015.00124 13. Blackmon H., Ross L., Bachtrog D. Sex determination, sex chromosomes, and karyotype evolution in Insects. Journal of Heredity. 2016. P.1–16. doi:10.1093/jhered/esw047 14. Bratus A., Slota E. DMRT1/Dmrt1, the sex determining or sex differentiating gene in Vertebrata. Folia Biol. 2006. V. 54. P. 81 – 86. 15. Burghardt G., Hediger M., Siegenthaler C., Moser M., Dübendorfer A., Bopp D. The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development. Development Genes and Evolution. 2005. V. 215(4). P.165 – 176. doi:10.1007/s00427–004–0464–7 16. Butcher R.D.J., Whitfield W.G.F., Hubbard S.F. Complementary sex determination in the genus Diadegma (Hymenoptera: Ichneumonidae). J. Evol. Biol. 2000. P. 13593 – 13606. 17. Chapman N.C., Beekman M., Allsopp M.H., Rinderer T.E., Lim J., Oxley P.R., Oldroyd B.P. Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity (Edinb). 2015. V. 114 (6). P. 584 – 592. doi:10.1038/hdy.2014.127 18. Cho S., Huang Z.Y., Green D.R., Smith D.R., Zhang J. Evolution of the complementary sex–determination gene of honey bees: Balancing selection and trans–species polymorphisms. Genome Research. 2006. № 2. P. 1366 – 1375. doi:10.1101gr.4695306 19. Cho S., Huang Z.Y., Zhang J. Sex–specific splicing of the honeybee doublesex gene reveals 300 million years of evolution at the bottom of the insect sex–determination pathway. Genetics. 2007. V.177. P. 1733–1741. doi:10.1534/genetics.107.078980 20. Cole–Clark M.P., Barton D.A., Allsopp M.H., Beekman M., Gloag R.S., Wossler T.C., Ronai I., Smith N., Reid R.J., Oldroyd B.P. Cytogenetic basis of thelytoky in Apis mellifera capensis. Apidologie. 2017. V. 48 (5). P.623–634. doi:10.1007s13592–017–0505–7 21. Cristino A.S., Nascimento A.M., Costa L.F., Simoes Z.L.P. A comparative analysis of highly conserved sex–determining genes between Apis mellifera and Drosophila melanogaster. Genetics and Molecular Research. 2006. V. 5 (1). P.154 – 168. 22. de Boer J.G., Ode P.J., Rendahl A.K., Rendahl A.K., Vet L.E.M., Whitfield J.B., Heimpel G.E. Experimental support for multiple–locus complementary sex determination in the parasitoid Cotesia vestalis. Genetics. 2008. V. 180 (3). P. 1525–1535. doi:10.1534genetics.107.083907 23. de Boer J.G., Kuijper B., Heimpel G.E., Beukeboom L.W. Sex determination meltdown upon biological control introduction of the parasitoid Cotesia rubecula? Evol Appl. 2012. V. 5. P. 444–454. doi:10.1111j.1752– 4571.2012.00270.x 24. Dobata S., Sasaki T., Mori H., Hasegawa E., Shimada M., Tsuji K. Cheater genotypes in the parthenogenetic ant Pristomyrmex punctatus. Proceedings of the Royal Society London Series B. 2009. V. 276. P. 567–574. 25. Doums C., Cronin A.L., Ruel C., Federici P., Haussy C., Tirard C., Monnin T. Facultative use of thelytokous parthenogenesis for queen production in the polyandrous ant Cataglyphis cursor. J Evol Biol. 2013. V. 26 (7). P. 143 – 144. doi:10.1111jeb.12142 26. Dyer A.G., Boyd–Gerny S., McLoughlin S., Rosa M.G., Simonov V., Wong B.B. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B. 2012. V. 279. P. 3606–3615. doi:10.1098rspb.2012.0827 27. Eirin–Lopez J.M., Sanchez L. The comparative study of five sex–determining proteins across insects unveils high rates of evolution at basal components of the sex determination cascade. Development Genes and Evolution. 2015. V. 225 (1). P. 23 – 30. doi:10.1007s0042701504916 28. Elias J., Mazzi D., Dorn S. No need to discriminate? Reproductive diploid males in a parasitoid with complementary sex determination. PLoS One. 2009. V. 4 (6). e6024. doi:10.1371journal.pone.0006024 29. Escriba M.C., Giardini M.C., Goday C. Histone H3 phosphorylation and non–disjunction of the maternal X chromosome during male meiosis in sciarid flies. Journal of Cell Science. 2011. V. 124 (10). P. 1715–1725. doi:10.1242jcs.083022 30. Espinosa M.S., Virla E.G., Cuozzo S. Wolbachia infections responsible for thelytoky in Dryinid wasps. The case of Gonatopus bonaerensis Virla (Hymenoptera: Dryinidae). Neotrop Entomol. 2017. V. 46 (4). P. 409– 413. doi:10.1007s137440160475x 31. Gadau J. A linkage analysis of the sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity. 2001. V.87. P. 234–242. 32. Gempe T., Hasselmann M., Schiott M., Hause G., Otte M., Beye M. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biology. 2009. V. 7 (10). doi:10.1371journal.pbio.1000222 33. Geuverink E., Verhulst E.C., van Leussen M., van de Zande L., Beukeboom L.W. Maternal provision of non sex–specific transformer messenger RNA in sex determination of the wasp Asobara tabida. Insect Mol Biol. 2018. V. 27 (1). P. 99-109. doi:10.1111/imb.12352 34. Geuverink E., Beukeboom L.W. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects. Sex Dev. 2014. V. 8. Р. 38–49. doi:10.1159000357056 35. Gloag R., Ding G.L., Christie J.R., Buchmann G., Beekman M., Oldroyd B.P. An invasive social insect overcomes genetic load at the sex locus. Nature Ecology & Evolution. 2016. V.1. doi:10.1038s41559-016-0011 36. Gotoh H., Zinna R.A., Warren I., DeNieu M., Niimi T., Dworkin I., Emlen D.J., Miura T., Lavine L.C. Identification and functional analyses of sex determination genes in the sexually dimorphic stag beetle Cyclommatus metallifer. BMC Genomics. 2016. P.17. doi:10.1186s12864–016–2522–8 37. Graham P., Penn J.K., Schedl P. Masters change, slaves remain. Bioessays. 2003. V. 25. P. 1–4. 38. Gu H., Dorn S. Mating system and sex allocation in the gregarious parasitoid Cotesia glomerata. Anim Behav. 2003. V.66 (2). P. 259– 264. doi:10.1006/anbe.2003.2185 39. Harpur B.A., Sobhani M., Zayed A. A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. The Netherlands Entomological Society Entomologia Experimentalis et Applicata. 2012. P.1–9. doi:10.1111j.1570–7458.2012.01306.x 40. Hasselmann M., Fondrk M.K., Page R.E., Beye M. Fine scale mapping in the sex locus region of the honey bee (Apis mellifera). Insect Molecular Biology. 2001. V. 10(6). P. 605–608. doi:10.1046/j.0962–1075.2001.00300.x 41. Hasselmann M., Gempe T., Schiott M., Nunes–Silva C.G., Otte M., Beye M. Evidence for the evolutionary nascence of a novel sex determination pathway in honey bees. Nature. 2008a. V. 454. P. 519 – 523. doi:10.1038nature07052 42. Hasselmann M., Vekemans X., Pflugfelder J. Evidence for convergent nucleotide evolution and high allelic turnover rates at the complementary sex determiner gene of Western and Asian honeybees Mol. Biol. Evol. 2008b. V. 25 (4). P. 696–708. doi:10.1093molbevmsn011 43. Hasselmann M., Lechner S., Schulte C., Beye M. Origin of a function by tandem gene duplication limits the evolutionary capability of its sister copy. Proc Natl Acad Sci USA. 2010. V. 107 (30). Р. 13378–13383. doi:10.1073/pnas.1005617107 44. Heimpel G.E., de Boer J.G. Sex determination in the Hymenoptera. Annu. Rev. Entomol. 2008. V. 53. P. 209–230. doi:10.1146annurev.ento.53.103106.093441 45. Heraty J.M., Darling D.C. Fossil Eucharitidae and Perilampidae (Hymenoptera: Chalcidoidea) from Baltic Amber. Zootaxa. 2009. V.2306. P.1 – 16. 46. Hodgkin J. The remarkable ubiquity of DM domain factors as regulators of sexual phenotype: ancestry or aptitude? Genes Dev. 2002. V. 16. P. 2322–2326 47. Hu S., Dilcher D.L., Jarzen D.M., Taylor D.W. Early steps of angiosperm–pollinator coevolution. Proc Natl Acad Sci USA. 2008. V. 10 (1). Р. 240–245. doi:10.1073 pnas.0707989105 48. Kellner K., Seal J.N., Heinze J. Sex at the margins: parthenogenesis vs. facultative and obligate sex in a Neotropical ant. J Evol Biol. 2013. V. 26 (1). P. 108 – 117. doi:10.1111jeb.12025 49. Koch V., Nissen I., Schmitt B.D., Beye M. Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects. PLOS ONE. 2014. V. 9. P. 11. doi:10.1371journal.pone.0091883 50. Koukidou M., Alphey L. Practical applications of insects' sexual development for pest control Sex Dev. 2014. V. 8 (13). P. 127 – 136.doi:10.1159000357203 51. Lechner S., Ferretti L., Schöning C., Kinuthia W., Willemsen D., Hasselmann M. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex–determining specificities of the honey bee Apis mellifera. Mol Biol Evol. 2014. V. 29. doi:10.1093molbevmst207 52. Ledon–Rettig C.C., Zattara E.E., Moczek A.P. Asymmetric interactions between doublesex and tissue– and sex–specific target genes mediate sexual dimorphism in beetles. Nat Commun.2017.V.8.doi:10.1038ncomms14593 53. Liu G., Wu Q., Li J., Zhang G., Wan F. RNAi–mediated knock–down of transformer and transformer2 to generate male–only progeny in the oriental fruit fly, Bactrocera dorsalis. (Hendel) PloS One. 2015. V. 10 (6). doi:10.1371journal.pone.0128892 54. Liu Z.Y., Wang Z.L., Wu X.B., Zeng Z.J Csd alleles in the red dwarf honey bee (Apis florea, Hymenoptera: Apidae) show exceptionally high nucleotide diversity. Insect Sci. 2011. V. 18. P. 645–651. doi:10.1111j.1744-7917.2011.01437.x 55. Liu Z.Y., Wang Z.L., Yan W.Y., Wu X.B., Zeng Z.J., Huang Z.Y. The sex determination gene shows no founder effect in the giant honey bee, Apis dorsata. PLoS One. 2012. V.7. e34436. doi:10.1371journal.pone.0034436 56. Ma W.J., Pannebakker B.A., van de Zande L., Schwander T., Wertheim B., Beukeboom L.W. Diploid males support a twostep mechanism of endosymbiont–induced thelytoky in a parasitoid wasp. BMC Evol. Biol. 2015. V. 15. P. 84. doi:10.1186s12862–015–0370–9 57. Masuko K. Thelytokous parthenogenesis in the ant Myrmecina nipponica (Hymenoptera: Formicidae). Zoolog Sci. 2014. V. 31(9). P. 5826. doi:10.2108zs140050 58. Matsuda M., Nagahama Y., Shinomiya A., Sato T., Matsuda C., Kobayashi T., Morrey C.E., Shibata N., Asakawa S., Shimizu N., Hori H., Hamaguchi S., Sakaizumi M. DMY is a Y–specific DM–domain gene required for male development in the medaka fish. Nature. 2002. V. 417. P. 559–563. 59. Mine S., Sumitani M., Aoki F., Hatakeyama M., Suzuki M.G. Identification and functional characterization of the sex–determining gene doublesex in the sawfly, Athalia rosae (Hymenoptera: Tenthredinidae). Appl Entomol Zool. 2017. V. 52(3). P. 497-509. doi:10.1007s13355–017–0502–3 60. Miyakawa M.O., Mikheyev A.S. QTL mapping of sex determination loci supports an ancient pathway in ants and honey bees. PLoS Genetics. 2015. V. 11(11). e1005656. doi:10.1371journal.pgen.1005656 61. Miyakawa M.O., Tsuchida K., Miyakawa H. The doublesex gene integrates multi–locus complementary sex determination signals in the Japanese ant, Vollenhovia emeryi. Insect Biochem Mol Biol. 2018. V. 94. P. 42 – 49. doi:10.1016j.ibmb.2018.01.006 62. Nagaraju J., Gopinath G., Sharma V., Shukla J.N. Lepidopteran sex determination: a cascade of surprises. Sex Dev. 2014. V. 8 (1–3). P. 104–112. doi:10.1159000357483 63. Naito T., Ishikawa M., Nishimoto Y. Two–locus multiple–allele sex determination in the rose sawfly Arge nigrinodosa. Presented at 3rd Int. Hymenopt. Congr., Canberra, Aust. 2000. 64. Narendra U., Zhu L., Li B., Wilken J., Weiss M.A. Sex–specific gene regulation. The Doublesex DM motif is a bipartite DNA–binding domain. J. Biol Chem. 2002. V.277 (45). Р. 43463–43473. doi10.1074jbc.M204616200 65. Nguyen T.M., Bressac C., Chevrier C. Heat stress affects male reproduction in a parasitoid wasp. J Insect Physiol. 2013. V. 59 (3). P. 248–254. doi:10.1016j.jinsphys.2012.12.001 66. Nissen I., Müller M., Beye M. The Am–tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee. Genetics. 2012. V. 192. P. 1015–1026. doi:10.1534genetics.112.143925 67. Normark B.B. The evolution of alternative genetic systems in insects. Annu. Rev. Entomol. 2003. V. 48. P. 397–423. 68. Nugnes F., Gebiola M., Monti M.M., Gualtieri L., Giorgini M., Wang J., Bernardo U. Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex–ratio differences. PLoS One. 2015. V. 10(5). e0124660. doi:10.1371journal.pone.0124660 69. Oliveira D.C., Werren J.H., Verhulst E.C., Giebel J.D., Kamping A., Beukeboom L.W., van de Zande L. Identification and characterization of the doublesex gene of Nasonia. Insect Mol Biol. 2009. V. 18 (3). P. 315 – 324. doi:10.1111j.1365–2583.2009.00874.x 70. Paladino L.C., Muntaabski I., Lanzavecchia S., Bagousse–Pinguet Y.L., Viscarret M., Juri M., Fueyo–Sanchez L., Papeschi A., Cladera J., Bressa M.J. Complementary sex determination in the parasitic wasp Diachasmimorpha longicaudata. PLoS One. 2015. 17p. doi:10.1371journal.pone.0119619 71. Pearcy M., Hardy O., Aron S. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity (Edinb). 2006.V. 96 (5). P. 377 – 382. doi:10.1038sj.hdy.6800813 72. Peters R.S., Krogmann L., Mayer C., Carlo P., Thomas S., Shanlin L., Xin Z., Torsten W., Rust J., Misof B., Niehuis O. Evolutionary History of the Hymenoptera. Current Biology. 2017. V.27 P.1013–1018. doi:10.1016j.cub.2017.01.027 73. Price D.C., Egizi A., Fonseca D.M. The ubiquity and ancestry of insect doublesex. Scientific Reports. 2015. V. 5. 13068. doi:10.1038srep13068 74. Rabeling C., Kronauer D.J. Thelytokous parthenogenesis in eusocial Hymenoptera. Annu Rev Entomol. 2013. V. 58. P.273 – 292. 75. Rabeling C., Lino-Neto J., Cappellari S.C., Dos-Santos I.A., Mueller U.G., Bacci M. Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One. 2009. V. 4. e6781. doi:10.1371/journal.pone.0006781 76. Ravary F., Jaisson P. Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insectes Sociaux. 2004. V. 51. P. 67–73. doi:10.1007s00040-003-0724-y 77. Ronquist F., Klopfstein S., Vilhelmsen L., Schulmeister S., Murray D.L., Rasnitsyn A.P. A total–evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 2012. V. 61. P. 973–999. 78. Ross L., Davies N.G., Gardner A. How to make a haploid male. Evolution Letters. 2019. V. 3 (2). P. 173-184. doi:10.1002evl3.107 79. Roth A., Vleurinck C., Netschitailo O., Bauer V., Otte M., Kaftanoglu O., Page R. E., Beye M. A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biol. 2019. V. 17(3). e3000171. https:doi.org10.1371journal.pbio.3000171 80. Saccone G., Salvemini M., Polito L.C. The transformer gene of Ceratitis capitata: a paradigm for a conserved epigenetic master regulator of sex determination in insects. Genetica. 2011. V. 139(1). P. 99-111. doi:10.1007s10709-010-9503-7 81. Sanchez L. Sex–determining mechanisms in insects. Int. J. Dev. Biol. 2008. V.52. P.837 – 856. doi:10.1387ijdb.072396ls 82. Sawanth S.K., Gopinath G., Sambrani N., Arunkumar K.P. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects. J. Biosci. 2016. V. 41(2). P. 283 – 294. 83. Schneider M.V., Driessen G., Beukeboom L.W., Boll R., van Eunen K., Selzner A., Talsma J., Lapchin L. Gene flow between arrhenotokous and thelytokous populations of Venturia canescens (Hymenoptera). Heredity. 2003. V. 90. P. 260–267. 84. Schurko A.M. To “Bee or not to bee” male or female? An educational primer for use with “The Am–tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee”. Genetics. 2013. V. 193 (4). P. 1019–1023. doi:10.1534genetics.113.150417 85. Shukla J.N., Nagaraju J. Doublesex: a conserved downstream gene controlled by diverse upstream regulators. Journal of Genetics. 2010. V. 89 (3). P. 341–356. 86. Shukla J.N., Palli S.R. Sex determination in beetles: production of all male progeny by parental RNAi knockdown of transformer. Sci Rep. 2012. V. 2 (602). doi:10.1038srep00602 87. Stahlhut J.K., Cowan D.P. Inbreeding in a natural population of Euodynerus foraminatus (Hymenoptera: Vespidae), a solitary wasp with single‐locus complementary sex determination. Molecular Ecology. 2004. V.13. P.631– 638. doi:10.1046j.1365-294X.2004.02090.x 88. Sun D., Guo Z., Liu Y., Zhang Y. Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front Physiol. 2017. V. 8. P. 608. doi:10.3389fphys.2017.00608 89. Tanaka A., Aoki F., Suzuki M.G. Conserved domains in the transformer protein act complementary to regulate sex-specific splicing of its own pre-mRNA. Sex Dev. 2018. V. 12 (4). P. 180-190. doi:10.1159000489444 90. Tarpy D.R., Delaney D.A., Seeley T.D. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States. PLoS One. 2015. V. 10 (3). e0118734. doi:10.1371journal.pone.0118734 91. Tram U., Fredrick K., Werren J.H., Sulliva W. Paternal chromosome segregation during the first mitotic division determines Wolbachia–induced cytoplasmic incompatibility phenotype. Journal of Cell Science. 2006. V.119. P.3655– 3663. doi:10.1242jcs.03095 92. Trukhina A.V., Lukina N.A., Wackerow–Kouzova N.D., Smirnov A.F. The variety of vertebrate mechanisms of sex determination. Biomed Res Int. 2013. V. 2013 (587460). doi:10.11552013587460 93. Tsutsui Y., Maeto K., Hamaguchi K., Isaki Y., Takami Y., Naito T., Miura K. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera. Bull. Entomol. Res. 2014. V. 104 (3). P.307–313. doi:10.1017S0007485314000017 94. van de Zande L., Verhulst E.C. Genomic imprinting and maternal effect genes in haplodiploid sex determination. Sex Dev. 2014. V. 8. P. 74–82. doi:10.11590003571 95. van Wilgenburg E., Driessen G., Beukeboom L.W. Single locus complementary sex determination in Hymenoptera: an "unintelligent" design? Frontiers in Zoology. 2006. V. 3(1). doi:10.1186/1742-9994-3-1 96. Vavre F., de Jong J.H., Stouthamer R. Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity (Edinb). 2004. V. 93 (6). P. 5926. 97. Verhulst E.C., van de Zande L. Double nexus – Doublesex is the connecting element in sex determination. Briefings in Functional Genomics. 2015. P. 1–11. doi:10.1093bfgpelv005 98. Verhulst E.C., van de Zande L. Insect sex determination: a cascade of mechanisms. Sex Dev. 2014. V. 8(13). P.56. doi:10.1159000358405 99. Verhulst E.C., van de Zande L., Beukeboom L.W. Insect sex determination: it all evolves around transformer. Current Opinion in Genetics & Development. 2010b. V.20. P.376–383. doi:10.1016j.gde.2010.05.001 100. Verhulst E.C., Beukeboom L.W., van de Zande L. Maternal control of haplodiploid sex determination in the wasp Nasonia. Science. 2010a. 328. P. 620 – 623. 101. Wang H., Wang Z., Zeng Z., Wu X–B., Yan W–Y. Nucleotide diversity based on csd gene of the black giant honey bee, Apis laboriosa (Hymenoptera: Apidae). Eur. J. Entomol. 2013. V. 110(2). P.215–220. doi:10.14411eje.2013.095 102. Wang X.X., Qi L.D., Jiang R., Du Y–Z., Li Y–X. Incomplete removal of Wolbachia with tetracycline has two–edged reproductive effects in the thelytokous wasp Encarsia formosa (Hymenoptera: Aphelinidae). Sci Rep. 2017. V.7. P.440 – 414. doi:10.1038srep44014 103. Wang Z., Liu Z., Wu X., Yan W., Zeng Z. Polymorphism analysis of csd gene in six Apis mellifera subspecies. Mol Biol Rep. 2012. V. 39. P. 3067–3071. doi10.1007s11033–011–1069–7 104. The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006. V. 443 (7114). P. 931–949. doi:10.1038nature05260 105. Werren J.H., Stouthamer R. PSR (paternal sex ratio) chromosomes: the ultimate selfish genetic elements. Genetica. 2003. V. 117 (1). P.85 – 101. doi:10.1023A:1022368700752 106. Whiting P.W. Multiple alleles in complementary sex determination of Habrobracon. Genetics. 1943. V. 24. P. 110–111. 107. Xu J., Chen S., Zeng B., James A.A., Tan A., Huang Y. Bombyx mori P–element somatic inhibitor (BmPSI) is a key auxiliary factor for silkworm male sex determination. PLoS Genet. 2017. V. 13 (1). e1006576. doi:10.1371journal.pgen.1006576 108. Zareba J., Blazej P., Laszkiewicz A., Sniezewski L., Majkowski M., Janik S., Cebrat M. Uneven distribution of complementary sex determiner (csd) alleles in Apis mellifera population. Scientific Reports. 2017. V.7. doi:10.1038s41598–017–02629–9 109. Zaviezo T., Retamal R., Urvois T., Fauvergue X., Blin A., Malausa T. Effects of inbreeding on a gregarious parasitoid wasp with complementary sex determination. Evol Appl. 2017. V. 11(2). P. 243 – 253. doi:10.1111eva.12537 110. Zhang W., Li B., Singh R., Narendra U., Zhu L., Weiss M.A. Regulation of sexual dimorphism: mutational and chemogenetic analysis of the doublesex DM domain. Mol. Cell Biol. 2006. V. 26 (2). P.535–547. doi:10.1128/MCB.26.2.535-547.2006